精英家教网 > 高中数学 > 题目详情
11.已知椭圆E的左、右焦点分别为F1、F2,过F1且斜率为$\frac{4}{3}$的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为(  )
A.$\frac{5}{7}$B.$\frac{1}{3}$C.$\frac{\sqrt{7}}{7}$或$\frac{5}{7}$D.$\frac{5}{7}$或$\frac{1}{3}$

分析 通过椭圆的定义可得PF1、PF2,利用勾股定理及离心率公式计算即得结论.

解答 解:由题可知:$\frac{P{F}_{2}}{P{F}_{1}}=\frac{4}{3}$,即PF2=$\frac{4}{3}$PF1
又PF2+PF1=2a,∴PF1=$\frac{6}{7}$a,PF2=$\frac{8}{7}$a,
由勾股定理可知:$4{c}^{2}=(\frac{6}{7}a)^{2}+(\frac{8}{7}a)^{2}=\frac{100}{49}{a}^{2}$,
即:${c}^{2}=\frac{25}{49}{a}^{2}$,
∴$(\frac{c}{a})^{2}=\frac{25}{49}$,则e=$\frac{5}{7}$;
或$\frac{P{F}_{2}}{{F}_{1}{F}_{2}}=\frac{4}{3}$,$P{F}_{2}=\frac{8}{3}c$,则$P{F}_{1}=2a-\frac{8}{3}c$,
由$P{{F}_{1}}^{2}={F}_{1}{{F}_{2}}^{2}+P{{F}_{2}}^{2}$,解得e=$\frac{1}{3}$.
故选:D.

点评 本题考查求椭圆的离心率,涉及到三角函数的定义、勾股定理等基础知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.$?x∈{R}\;,\;\root{3}{x}+1>0$
B.在线性回归分析中,如果两个变量的相关性越强,则相关系数r就越接近于1
C.p∨q为真命题,则命题p和q均为真命题
D.命题“$?{x_0}∈{R}\;,\;x_0^2-{x_0}>0$”的否定是“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在正三棱柱△ABC-△A1B1C1中,AB=1,点D在棱BB1上,若BD=1,则AD与平面AA1C1C所成角的正切值为$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆”是“-3<m<5”的(  )条件.
A.必要不充分B.充要C.充分不必要D.不充分不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数y=x2+x-1在(1,1)处的切线方程是3x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知中心在原点O,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$的椭圆过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求椭圆的方程;
(Ⅱ)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.F1,F2分别是椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点A(3,0),F2恰为线段AF1的中点,椭圆Γ的离心率为$\frac{1}{2}$(I)求椭圆Γ的方程;
(Ⅱ)设点P是椭圆Γ在第一象限上的任一点,连接PF1,PF2,过P点作斜率为k的直线l,使得l与椭圆Γ有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,试证明$\frac{1}{k{k}_{1}}$+$\frac{1}{k{k}_{2}}$为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在等腰三角形ABC中,若AB=AC,且sinA=$\frac{4}{5}$,则cosB=$\frac{\sqrt{5}}{5}$或$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在正项等比数列{an}中,a1a5-2a3a5+a3a7=36,a2a4+2a2a6+a4a6=100,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案