精英家教网 > 高中数学 > 题目详情
6.设函数y=x2+x-1在(1,1)处的切线方程是3x-y-2=0.

分析 求出函数的导数,求得切线的斜率,运用点斜式方程即可得到所求切线的方程.

解答 解:函数y=x2+x-1的导数为y′=2x+1,
在(1,1)处的切线斜率为k=3,
则在(1,1)处的切线方程为y-1=3(x-1),即为3x-y-2=0.
故答案为:3x-y-2=0.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用直线方程是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设命题p:若实数x满足x2-4ax+3a2≤0,其中a>0;命题q:实数x满足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8≥0\end{array}\right.$
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知扇形的圆心角为2弧度,面积为4,则该扇形的弧长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x∈R,x2+1>0,命题q:若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)抛物线的顶点在原点,准线方程为y=-1,求抛物线的标准方程;
(Ⅱ)已知双曲线的一条渐近线方程是x+2y=0,并经过点(2,2),求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆E的左、右焦点分别为F1、F2,过F1且斜率为$\frac{4}{3}$的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为(  )
A.$\frac{5}{7}$B.$\frac{1}{3}$C.$\frac{\sqrt{7}}{7}$或$\frac{5}{7}$D.$\frac{5}{7}$或$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α,β都是锐角,sinα=$\frac{3}{5}$,tan(α-β)=-$\frac{1}{3}$,求tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某公司领导层为了了解本公司的管理状况,从公司员工中随机抽取了25人,让他们对公司的管理水平打分(满分为100分)得到如下数据:69,82,81,76,84,79,77,77,65,84,69,83,71,76,89,74,73,83,78,82,72,74,86,79,76.
(1)根据上述数据完成样本的频率分布表和频率分布直方图;
(2)从这25人所打的分数中任取3个,记分数在[75,85)内的个数为X,求X的分布列和数学期望.
分组频数  频率
[65,70)  
[70,75)  
[75,80)  
[80,85)  
[85,90[ 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在△ABC中,内角A、B、C的对边分别为a、b、c,角B为锐角,向量$\overrightarrow{m}$=(2sin(A+C),$\sqrt{3}$),$\overrightarrow{n}$=(2cos2B-1,cosB),且$\overrightarrow{m}$$∥\overrightarrow{n}$.
(1)求角B的大小;
(2)如果b=1,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案