精英家教网 > 高中数学 > 题目详情
15.已知三棱锥P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,则三棱锥P-ABC外接球的体积为$\sqrt{6}π$.

分析 取PB的中点O,推导出O为外接球的球心,从而得到外接球半径R=$\frac{\sqrt{6}}{2}$,由此能求出结果.

解答 解:取PB的中点O,∵PA⊥平面ABC,
∴PA⊥AB,PA⊥BC,
又BC⊥AC,PC∩AC=A,∴BC⊥平面PAC,
∴BC⊥PC,∴OA=$\frac{1}{2}PB$,OC=$\frac{1}{2}$PB,
∴OA=OB=OC=OP,
∴O为外接球的球心,
又PA=2,AC=BC=1,
∴AB=$\sqrt{2}$,PB=$\sqrt{6}$,
∴外接球半径R=$\frac{\sqrt{6}}{2}$,
∴${V}_{球}=\frac{4}{3}π{R}^{3}=\frac{4}{3}π×(\frac{\sqrt{6}}{2})^{3}$=$\sqrt{6}$π.
故答案为:$\sqrt{6}π$.

点评 本题考查三棱锥外接球的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知f(x)=x2+alog2(x2+2)+a2-2有唯一零点,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为菱形,且AB=AC=2,O为AC的中点,PO⊥平面ABCD,M为PD的中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)若三棱锥D-MAC的体积为$\frac{\sqrt{3}}{6}$,求平面MAC与平面PAB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:
课程数学1数学2数学3数学4数学5合计
选课人数1805405403601801800
为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X-Y,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={x||x-a|<2},B={x|$\frac{1}{4}$<2x<8}.
(1)若a=-1,求集合A;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x(1-2x).
(1)求f(0);
(2)当x<0时,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(文)试卷(解析版) 题型:解答题

已知函数.

(1)当时,求曲线在点处的切线方程;

(2)讨论函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(理)试卷(解析版) 题型:解答题

已知函数,(为自然对数的底数),且曲线在坐标原点处的切线相同.

(1)求的最小值;

(2)若时,恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:选择题

为了了解某学校1200名高中男生的身体发育情况,抽查了该校100名高中男生的体重情况.根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在的人数为( )

A.360 B.336 C.300 D.280

查看答案和解析>>

同步练习册答案