分析 取PB的中点O,推导出O为外接球的球心,从而得到外接球半径R=$\frac{\sqrt{6}}{2}$,由此能求出结果.
解答 解:取PB的中点O,∵PA⊥平面ABC,![]()
∴PA⊥AB,PA⊥BC,
又BC⊥AC,PC∩AC=A,∴BC⊥平面PAC,
∴BC⊥PC,∴OA=$\frac{1}{2}PB$,OC=$\frac{1}{2}$PB,
∴OA=OB=OC=OP,
∴O为外接球的球心,
又PA=2,AC=BC=1,
∴AB=$\sqrt{2}$,PB=$\sqrt{6}$,
∴外接球半径R=$\frac{\sqrt{6}}{2}$,
∴${V}_{球}=\frac{4}{3}π{R}^{3}=\frac{4}{3}π×(\frac{\sqrt{6}}{2})^{3}$=$\sqrt{6}$π.
故答案为:$\sqrt{6}π$.
点评 本题考查三棱锥外接球的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 课程 | 数学1 | 数学2 | 数学3 | 数学4 | 数学5 | 合计 |
| 选课人数 | 180 | 540 | 540 | 360 | 180 | 1800 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(理)试卷(解析版) 题型:解答题
已知函数
,
,(
为自然对数的底数),且曲线
与
在坐标原点处的切线相同.
(1)求
的最小值;
(2)若
时,
恒成立,试求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:选择题
为了了解某学校1200名高中男生的身体发育情况,抽查了该校100名高中男生的体重情况.根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在
的人数为( )
![]()
A.360 B.336 C.300 D.280
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com