精英家教网 > 高中数学 > 题目详情
3.某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:
课程数学1数学2数学3数学4数学5合计
选课人数1805405403601801800
为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X-Y,求随机变量ξ的分布列和数学期望E(ξ).

分析 (1)从选出的10名学生中选修数学1的人应为10×$\frac{180}{1800}$=1人,同理可得选修数学2的人应为3人,选修数学3的人应为3人,选修数学4的人应为1人,选修数学1的人应为1人.从选出的10名学生中随机抽取3人共有${∁}_{10}^{3}$=120种选法,选出的这3人中至少有2人选择数学2的有${∁}_{3}^{2}•{∁}_{7}^{1}$+${∁}_{3}^{3}$=22种,即可得出这3人中至少有2人选择数学2的概率P.
(2)X的可能取值为0,1,2,3.Y的可能取值为0,1.ξ的可能取值为-1,0,1,2,3.P(ξ=-1)=P(X=0,Y=1)=$\frac{{∁}_{1}^{1}•{∁}_{6}^{2}}{{∁}_{10}^{3}}$,P(ξ=0)=P(X=0,Y=0)+P(X=1,Y=1)=$\frac{{∁}_{6}^{3}+{∁}_{3}^{1}{∁}_{1}^{1}{∁}_{6}^{1}}{{∁}_{10}^{3}}$.P(ξ=1)=P(X=1,Y=0)+P(X=2,Y=1)=$\frac{{∁}_{3}^{1}{∁}_{6}^{2}+{∁}_{3}^{2}{∁}_{1}^{1}}{{∁}_{10}^{3}}$.P(ξ=2)=P(X=2,Y=0)=$\frac{{∁}_{3}^{2}{∁}_{6}^{1}}{{∁}_{10}^{3}}$.P(ξ=3)=P(X=3,Y=0)=$\frac{{∁}_{3}^{3}}{{∁}_{10}^{3}}$.即可得出ξ的分布列及其Eξ.

解答 解:(1)从选出的10名学生中选修数学1的人应为10×$\frac{180}{1800}$=1人,选修数学2的人应为10×$\frac{540}{1800}$=3人,选修数学3的人应为10×$\frac{540}{1800}$=3人,选修数学4的人应为10×$\frac{360}{1800}$=1人,选修数学1的人应为10×$\frac{180}{1800}$=1人.
从选出的10名学生中随机抽取3人共有${∁}_{10}^{3}$=120种选法,选出的这3人中至少有2人选择数学2的有${∁}_{3}^{2}•{∁}_{7}^{1}$+${∁}_{3}^{3}$=22种
,∴这3人中至少有2人选择数学2的概率P=$\frac{22}{120}$=$\frac{11}{60}$.
(2)X的可能取值为0,1,2,3.Y的可能取值为0,1.ξ的可能取值为-1,0,1,2,3.
P(ξ=-1)=P(X=0,Y=1)=$\frac{{∁}_{1}^{1}•{∁}_{6}^{2}}{{∁}_{10}^{3}}$=$\frac{1}{8}$.
P(ξ=0)=P(X=0,Y=0)+P(X=1,Y=1)=$\frac{{∁}_{6}^{3}+{∁}_{3}^{1}{∁}_{1}^{1}{∁}_{6}^{1}}{{∁}_{10}^{3}}$=$\frac{19}{60}$.
P(ξ=1)=P(X=1,Y=0)+P(X=2,Y=1)=$\frac{{∁}_{3}^{1}{∁}_{6}^{2}+{∁}_{3}^{2}{∁}_{1}^{1}}{{∁}_{10}^{3}}$=$\frac{2}{5}$.
P(ξ=2)=P(X=2,Y=0)=$\frac{{∁}_{3}^{2}{∁}_{6}^{1}}{{∁}_{10}^{3}}$=$\frac{3}{20}$.
P(ξ=3)=P(X=3,Y=0)=$\frac{{∁}_{3}^{3}}{{∁}_{10}^{3}}$=$\frac{1}{120}$.ξ的分布列为:

ξ-10123
P$\frac{1}{8}$$\frac{19}{60}$$\frac{2}{5}$$\frac{3}{20}$$\frac{1}{120}$
∴Eξ=-1×$\frac{1}{8}$+0×$\frac{19}{60}$+1×$\frac{2}{5}$+2×$\frac{3}{20}$+3×$\frac{1}{120}$=$\frac{3}{5}$.

点评 本题考查了古典概率计算公式、相互独立与互斥事件的概率计算公及其数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+alnx+1(a∈R).
(1)判断函数f(x)的单调性;
(2)若对于任意的x∈(1,e],任意的a∈(-2,-1),不等式ma-$\frac{1}{2}$f(x)<a2成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,A是其上顶点,且△AF1F2是等腰直角三角形,延长AF2与椭圆C交于另一点B,若△AF1B的面积是8,则椭圆C的方程是$\frac{x^2}{{{{12}^{\;}}}}+\frac{y^2}{6}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某3D打印机,其打出的产品质量按照百分制衡量,若得分不低于85分则为合格品,低于85分则为不合格品,商家用该打印机随机打印了15件产品,得分情况如图;
(1)写出该组数据的中位数和众数,并估计该打印机打出的产品为合格品的概率;
(2)若打印一件合格品可获利54元,打印一件不合格品则亏损18元,记X为打印3件产品商家所获得的利润,在(1)的前提下,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,AA1=$\sqrt{2}$,E,F分别是BC,CC1的中点.
(Ⅰ)证明:平面AEF⊥平面B1BCC1
(Ⅱ)求三棱锥B1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知{an},{bn}为两非零有理数列(即对任意的i∈N*,ai,bi均为有理数),{dn}为一无理数列(即对任意的i∈N*,di为无理数).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0对任意的n∈N*恒成立,试求{dn}的通项公式.
(2)若{dn3}为有理数列,试证明:对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要条件为$\left\{{\begin{array}{l}{{a_n}=\frac{1}{{1+{d_n}^6}}}\\{{b_n}=\frac{{{d_n}^3}}{{1+{d_n}^6}}}\end{array}}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2}+{{(-1)}^n}θ)}}$,试计算bn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知三棱锥P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,则三棱锥P-ABC外接球的体积为$\sqrt{6}π$.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(文)试卷(解析版) 题型:选择题

已知关于的方程有唯一实数解,则实数的值为( )

A.-1 B.1

C.-1或3 D.1或-3

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:填空题

为锐角,且,则

查看答案和解析>>

同步练习册答案