分析 (Ⅰ)先求出函数的导数,分类讨论,令f'(x)>0,得到函数f(x)的单调递增区间,令f'(x)<0,得到函数f(x)的单调递减区间;
(Ⅱ)由题意,ma-$\frac{1}{2}$f(x)<a2成立,2ma-2a2<f(x)min,求出函数最小值,可得m>a+$\frac{1}{a}$,设h(a)=a+$\frac{1}{a}$,h′(a)=1-$\frac{1}{{a}^{2}}$>0,h(x)在(-2,-1)上单调递增,即可求实数m的取值范围.
解答 解:(1)f′(x)=$\frac{2{x}^{2}+a}{x}$,x≥0,
a≥0,f′(x)>0,函数f(x)在(0,+∞)上单调递增;
a<0,f′(x)>0,x>$\sqrt{-\frac{a}{2}}$,函数单调递增,单调增区间是($\sqrt{-\frac{a}{2}}$,+∞);f′(x)<0,0<x<$\sqrt{-\frac{a}{2}}$,函数单调递增,单调减区间是(0,$\sqrt{-\frac{a}{2}}$);
(2)由题意,ma-$\frac{1}{2}$f(x)<a2成立,2ma-2a2<f(x)min,
由(1)知,f(x)在x∈[1,e]上是增函数,
∴f(x)min=f(1)=2,
∴2ma-2a2<2,
∵a∈(-2,-1),
∴m>a+$\frac{1}{a}$,
设h(a)=a+$\frac{1}{a}$,h′(a)=1-$\frac{1}{{a}^{2}}$>0,h(x)在(-2,-1)上单调递增,
∴h(x)<h(-1)=-2,
∴m≥-2.
点评 本题考查了函数的单调性问题,函数的最值问题,考查了导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
| 性别 科目 | 男 | 女 |
| 文科 | 2 | 5 |
| 理科 | 10 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在区间(-2,1)上f(x)是增函数 | B. | 在(1,3)上f(x)是减函数 | ||
| C. | 当x=4时,f(x)取极大值 | D. | 在(4,5)上f(x)是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$-3 | B. | 2$\sqrt{2}$-1 | C. | 2$\sqrt{2}$+3 | D. | 2$\sqrt{2}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 课程 | 数学1 | 数学2 | 数学3 | 数学4 | 数学5 | 合计 |
| 选课人数 | 180 | 540 | 540 | 360 | 180 | 1800 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com