精英家教网 > 高中数学 > 题目详情
7.已知点P(a+b,a-b)在不等式组$\left\{{\begin{array}{l}{x-2y+2≥0}\\{y≥|x|}\end{array}}\right.$表示的区域内,则2a+b的最大值为(  )
A.$-\frac{2}{3}$B.0C.4D.6

分析 利用换元法,转化a、b为x,y的关系,利用线性规划求解目标函数的最值即可.

解答 解:令x=a+b,y=a-b,则2a+b=$\frac{3}{2}x+\frac{1}{2}y$,
画出不等式组$\left\{{\begin{array}{l}{x-2y+2≥0}\\{y≥|x|}\end{array}}\right.$的可行域,
$\frac{3}{2}x+\frac{1}{2}y$在点B处,取得最大值,
由$\left\{\begin{array}{l}x-2y+2=0\\ y=x\end{array}\right.$,可得$\left\{\begin{array}{l}x=2\\ y=2\end{array}\right.$,即B(2,2),
2a+b的最大值为$\frac{3}{2}x+\frac{1}{2}y$在点B处的最大值为:4.
故选:C.

点评 本题考查线性规划的应用,作出可行域以及判断目标函数的最值是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设复数z=1+i(i是虚数单位),则|$\frac{2}{z}$+z2|=(  )
A.1+iB.-1+iC.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足$\left\{\begin{array}{l}x+y+1≥0\\ 2x-y+2≥0\end{array}\right.$,若(-1,0)是使ax+y取得最大值的可行解,则实数a的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC中,角A,B,C所对边的长分别为a,b,c,满足a2+b2=2c2,则cosC的最小值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设实数x,y满足不等式组$\left\{{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥-1}\end{array}}\right.$.则z=3x+y的取值范围是(  )
A.[-4,0]B.[0,4]C.[-2,4]D.[-4,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A={x|1<x≤3},B={y|y=($\frac{1}{2}$)x-2,x∈A},则(∁RA)∩B=(  )
A.(0,1]B.(0,1]∪(3,+∞)C.(1,3]D.$[\frac{1}{2}{,^{\;}}1]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C的对边为a,b,c,b=8,c=8$\sqrt{3}$,S△ABC=16$\sqrt{3}$,则A等于(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a,b,c分别为角A,B,C的对边,若cos2$\frac{B}{2}=\frac{a+c}{2c}$,则△ABC的形状为(  )
A.正三角形B.直角三角形
C.等腰三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a,b∈R,满足a2+3ab+9b2=4,则Z=a2+9b2的取值范围为[$\frac{8}{3}$,8].

查看答案和解析>>

同步练习册答案