精英家教网 > 高中数学 > 题目详情
5.某班有学生55人,现将所有学生按1,2,3,…,55随机编号.若采用系统抽样的方法抽取一个容量为5的样本,已知编号为6,a,28,b,50号学生在样本中,则a+b=56.

分析 求出样本间隔即可得到结论.

解答 解:∵样本容量为5,
∴样本间隔为55÷5=11,
∵编号为6,a,28,b,50号学生在样本中,
∴a=17,b=39,
∴a+b=56,
故答案为:56.

点评 本题主要考查系统抽样的应用,根据条件求出样本间隔即可,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.执行如图所示的算法,则输出的结果是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点M(-6,5)在双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上,双曲线C的焦距为12,则它的渐近线方程为(  )
A.y=±$\frac{{\sqrt{5}}}{2}$xB.y=±$\frac{{2\sqrt{5}}}{5}$xC.y=±$\frac{2}{3}$xD.y=±$\frac{3}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线l:$\left\{\begin{array}{l}{x=1-2t}\\{y=-4t}\end{array}\right.$(t为参数)与曲线C:$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数)公共点有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,梯形ABCD中,AD∥BC,DC⊥BC,AD=2,BC=6,若以AB为直径的⊙O与CD相切于点E,则DE等于(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x+$\frac{1+a}{x}$-alnx.
(Ⅰ)若函数y=f(x)的图象在x=1处的切线与直线2x+y-1=0平行,求a的值;
(Ⅱ)在(I)的条件下方程f(x)=b在区间[1,e]上两个不同的实数根,求实数b的取值范围;
(Ⅲ)若在区间[1,e]上存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某射击手射击一次命中的概率是0.7,连续两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是(  )
A.$\frac{7}{10}$B.$\frac{6}{7}$C.$\frac{4}{7}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆γ:$\frac{x^2}{a^2}$+y2=1(常数a>1)的左顶点为R,点A(a,1),B(-a,1),O为坐标原点.
(Ⅰ)若P是椭圆γ上任意一点,$\overrightarrow{OP}$=$m\overrightarrow{OA}$+$n\overrightarrow{OB}$,求m2+n2的值;
(Ⅱ)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足kOM•kON=kOA•kOB,试探究△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.四个命题:①若x2=1则x=1的否命题是若x2≠1则x≠±1;②x=-1是x2-5x-6=0的必要不充分条件;③存在x∈R,使x2+x+1<0的否定是对任意x∈R,都有x2+x+1>0;④若sinα=sinβ,则α=β的否命题为真命题,其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案