精英家教网 > 高中数学 > 题目详情
9.已知ABCD为正方形,AB=2,O为AC的中点,在正方形内随机取一点,则取到的点到点O距离大于1的概率为1-$\frac{π}{4}$.

分析 由题意作出如图的图形,四边形ABCD是边长为1的正方形,其中的圆弧是半径为1的圆面的$\frac{1}{4}$,故阴影部分的面积易求,由概率公式可求.

解答 解:如图,四边形ABCD是边长为2的正方形,其中的圆弧是半径为2的圆面的$\frac{1}{4}$,
正方形的面积是4,$\frac{1}{4}$圆面的面积是π,
故阴影部分的面积是4-π,
则点P到点A的距离大于1的概率为$\frac{4-π}{4}=1-\frac{π}{4}$;
故答案为:1-$\frac{π}{4}$.

点评 本题考查几何概率模型,解题的关键是掌握几何概率模型的定义及求解方法,选定研究对象,作出对应的图形,求出相应的测试,如本题求的是面积,然后利用几何概率模型的求概率公式求出事件发生的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=f(4x),当x∈[1,4)时,f(x)=lnx,若区间[1,16)内,函数g(x)=f(x)-ax有三个不同的零点,则实数a的取值范围是(  )
A.($\frac{ln2}{2}$,$\frac{1}{e}$)B.($\frac{ln2}{8}$,$\frac{1}{4e}$)C.($\frac{ln2}{8}$,$\frac{1}{2e}$)D.($\frac{ln2}{8}$,$\frac{ln2}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2cos2$\frac{x}{2}$+$\sqrt{3}$sinx.
(1)求函数f(x)的最小正周期和值域;
(2)若α为第二象限角,且f(α+$\frac{π}{3}$)=-$\frac{1}{5}$,求$\frac{cos2α}{1-tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=a2ln x-x2+ax(a>0)
(1)求f(1)的值及函数f(x)的单调区间;
(2)若对x∈[1,e]的每一个值,e-1≤f(x)≤e2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若复数Z满足(2-i)2Z=1(i为虚数单位).则复数Z的虚部为$\frac{4}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(x>-1)}\end{array}\right.$,若f(x)=3,则x的值是(  )
A.1B.1或±$\sqrt{3}$C.±$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设AB为半圆O的直径,点C是弧AB的一个三等份点,点D是直径AB的一个三等份点,且点C、D均靠近B点,若半圆O的半径为3,则$\overrightarrow{DC}•\overrightarrow{AB}$=(  )
A.0B.$\frac{3}{2}$C.3D.$\frac{9}{2}\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C的方程为x2-y2-2x-4y+m=0
(1)若圆C的半径为2,求m的值
(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=$\frac{4\sqrt{5}}{5}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$=(3,1),$\overrightarrow{c}$=(x,3),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则x=-1.

查看答案和解析>>

同步练习册答案