精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{-{x}^{2}+2x,x>0}\end{array}\right.$,若方程f2(x)+bf(x)+$\frac{1}{4}$=0有六个相异实根,则实数b的取值范围(  )
A.(-2,0)B.(-2,-1)C.(-$\frac{5}{4}$,0)D.(-$\frac{5}{4}$,-1)

分析 先将函数进行换元,转化为一元二次函数问题.同时在结合函数f(x)的图象,确定b的取值范围.

解答 解:令t=f(x),则原函数方程等价为t2+bt+$\frac{1}{4}$=0.
作出函数f(x)的图象如图1:
图象可知当由0<t<1时,函数t=f(x)有3个交点.
所以要使f2(x)+bf(x)+$\frac{1}{4}$=0有六个相异实根,
则等价为有两个根t1,t2
且0<t1<1,0<t2<1.
令g(t)=t2+bt+$\frac{1}{4}$,
则由根的分布(如图2)可得$\left\{\begin{array}{l}{△>0}\\{f(0)=\frac{1}{4}>0}\\{f(1)=1+b+\frac{1}{4}>0}\\{0<-\frac{b}{2}<1}\end{array}\right.$,即$\left\{\begin{array}{l}{{b}^{2}-1>0}\\{b>-\frac{5}{4}}\\{-2<b<0}\end{array}\right.$,即$\left\{\begin{array}{l}{b>1或b<-1}\\{b>-\frac{5}{4}}\\{-2<b<0}\end{array}\right.$,
解得-$\frac{5}{4}$<b<-1,
则实数b的取值范围是(-$\frac{5}{4}$,-1).

故选:D.

点评 本题考查复合函数零点的个数问题,以及二次函数根的分布,解决本题的关键是利用换元,将复合函数转化为我们熟悉的二次函数,换元是解决这类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足条件$\left\{\begin{array}{l}y≤x\\ x+y≥2\\ 2x+y≥6\end{array}\right.$,则z=3x+2y的取值范围是(  )
A.(-∞,10]B.[5,10]C.[8,+∞)D.[8,10]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设不等式组$\left\{\begin{array}{l}{x-y+4≥0}\\{x+y≥0}\\{x≤1}\end{array}\right.$表示的平面区域为Ω1,不等式组$\left\{\begin{array}{l}{-2≤x≤1}\\{-1≤y≤5}\end{array}\right.$表示的平面区域为Ω2,在区域Ω2内随机取一点,则该点是取自于区域Ω1的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有(  )
A.a>bB.a<b
C.a=bD.a,b的大小与m,n的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,A=60°,a2=bc,则△ABC一定是(  )
A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有$f({\frac{{{x_1}+{x_2}}}{2}})≤\frac{1}{2}[{f({x_1})+f({x_2})}]$,则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
②对任意x1,x2,x3,x4∈[1,3],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)].
③f(x)在[1,3]上的图象是连续不断的;
④f(x2)在$[{1,\sqrt{3}}]$上具有性质P;
其中真命题的序号是(  )
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知Sn为数列{an}的前n项和,且a1=1,a2=3,an+2=3an,则S2016=(  )
A.2×(31008-1)B.2×31008C.$\frac{{{3^{2016}}-1}}{2}$D.$\frac{{{3^{2016}}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|log2(x-1)<2},B={x|a<x<6},且A∩B={x|2<x<b},则a+b=(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数a,b∈R且a2-ab+b2=3,则$\frac{(1+ab)^{2}}{{a}^{2}+{b}^{2}+1}$的最大值为$\frac{16}{7}$.

查看答案和解析>>

同步练习册答案