精英家教网 > 高中数学 > 题目详情
5.对任意的a∈(0,1)∪(1,+∞),则函数f(x)=logax+2必过定点为(  )
A.(0,2)B.(1,0)C.(1,2)D.(0,3)

分析 利用对数函数经过的特殊点判断求解即可.

解答 解:函数f(x)=logax恒过(1,0),
则:函数f(x)=logax+2必过定点为(1,2).
故选:C.

点评 本题考查对数函数的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知:四棱锥P-ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°
(1)求证:AF∥平面PCE;  
(2)求证:平面PCE⊥平面PCD;
(3)求点D到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等比数列{an}的公比为2,前3项的和是3,则前6项的和为(  )
A.9B.18C.27D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$\overrightarrow{a}$与$\overrightarrow{b}$-$\overrightarrow{c}$都是非零向量,则“$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$”是“$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$)”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面上∠AOB=60°,|${\overrightarrow{OA}}$|=|${\overrightarrow{OB}}$|=1.动点C满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ2+λμ+μ2=1,则点C的轨迹是(  )
A.线段B.C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}为等比数列,其前n项和Sn=3n-1+t,则t的值为(  )
A.-1B.-3C.$-\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=x+$\sqrt{x-2}$的值域为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.?x∈[-1,2]使得x2-ax-3<0恒成立,则实数a的取值范围为($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X,则P(X=2)=(  )
A.$\frac{96}{125}$B.$\frac{48}{125}$C.$\frac{36}{125}$D.$\frac{24}{125}$

查看答案和解析>>

同步练习册答案