精英家教网 > 高中数学 > 题目详情
7.已知圆P:x2+y2-4y=0及抛物线$S:y=\frac{x^2}{8}$,过圆心P作直线l,此直线与两曲线有四个交点,自左向右顺次记为A,B,C,D.如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线l的方程为(  )
A.$y=\frac{{\sqrt{2}}}{2}x+2$B.$y=-\frac{{\sqrt{2}}}{2}x+2$或$y=\frac{{\sqrt{2}}}{2}x+2$
C.$y=\sqrt{2}x+2$D.$y=\sqrt{2}x+2$或$y=-\sqrt{2}x+2$

分析 先确定圆P的标准方程,求出圆心与直径长,设出l的方程,代入抛物线方程,求出|AD|,利用线段AB、BC、CD的长按此顺序构成一个等差数列,可得|AD|=3|BC|,求出k的值,可得直线l的斜率的值,即可求出直线l的方程.

解答 解:圆P的方程为x2+(y-2)2=4,则其直径长|BC|=4,圆心为P(0,2),
∵AB,BC,CD的长按此顺序构成一个等差数列,
∴|AB|+|CD|=2|BC|=8,即|BC|=4,
又|AD|=|AB|+|BC|+|CD|=3|BC|=12.
设直线l的方程为y=kx+2,代入抛物线方程x2=8y得:x2-8kx-16=0,
设A(x1,y1),D(x2,y2),有$\left\{\begin{array}{l}△=64{k^2}+64>0\\{x_1}+{x_2}=8k,\;\;\\{x_1}{x_2}=-16,\;\;\end{array}\right.$,∴$|AD|=\sqrt{(1+{k^2})[{{({x_1}+{x_2})}^2}-4{x_1}{x_2}]}=\sqrt{(1+{k^2})(64{k^2}+64)}=8({k^2}+1)$,
∴8(k2+1)=12,即${k^2}=\frac{1}{2}$,解得$k=±\frac{{\sqrt{2}}}{2}$,
∴直线l的方程为$y=-\frac{{\sqrt{2}}}{2}x+2$或$y=\frac{{\sqrt{2}}}{2}x+2$,
故选:B.

点评 本题考查直线与圆、抛物线的位置关系,考查等差数列,考查学生的计算能力,确定|AD|是关键,综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若正数a,b满足2+log2a=3+log3b=log6(a+b),则$\frac{1}{a}+\frac{1}{b}$的值为108.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x),给出下列结论:
①若对于任意x1,x2∈R,且x1≠x2,都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,则f(x)为R上的增函数;
②若f(x)为R上的偶数,且在(-∞,0]上是减函数,f(-1)=0,则f(x)>0的解集为(-1,1);
③若f(x)是奇函数,在定义域(-2,2)上单调递增,则不等式f(2+x)+f(1-2x)>0的解集为(-∞,3).
其中正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等比数列{an}的前n项和为Sn,若${S_{2n}}=\frac{1}{2}({a_2}+{a_4}+…+{a_{2n}}),{a_1}{a_3}{a_5}=8$,则a8=(  )
A.$-\frac{1}{16}$B.$-\frac{1}{32}$C.-64D.-128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知p:?x∈R,sinx+2cosx=3,q:?x∈R,4x+2x+1+1>0,则下列命题中真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$,左右焦点分别为F1,F2,过F1且斜率不为0的直线l交椭圆于A,B两点,则|BF2||AF2|的最大值为(  )
A.3B.6C.4D.$\frac{25}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知的等比数列{an}中,a1a2a3=5,a4a5a6=10,则a7a8a9=20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x,y满足约束条件$\left\{{\begin{array}{l}{x-y-1≥0}\\{3x-2y-6≤0}\\{x≥0}\\{y≥0}\end{array}}\right.$,若目标函数$z=\frac{1}{m}\sqrt{{x^2}+{y^2}-9}(m>0)$的最大值为2,则$y=cos(mx+\frac{π}{3})$的图象向左平移$\frac{π}{3}$后的表达式为(  )
A.$y=cos(2x+\frac{2π}{3})$B.y=cos2xC.y=-cos2xD.$y=cos(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2,且∠A=60°,则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案