【题目】过点的椭圆的离心率为,椭圆与轴交于两点、,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点.
(1)求该椭圆的标准方程;
(2)当点异于点时,求证:为定值.
【答案】(1);(2)证明见解析.
【解析】
(1)先求出椭圆方程,当直线过椭圆右焦点时,写出直线的方程,并和椭圆联立方程,求得点的坐标,根据两点间距离公式即可求得线段的长;(2)设出直线的方程,并和椭圆联立方程,求得点的坐标,并求出点坐标,写出直线与直线的方程,并解此方程组,求得点的坐标,代入即可证明结论.
(1)由已知得,得,
椭圆的方程为,
椭圆的右焦点为,
此时直线的方程为,
由,解得,
;
(2)当直线与轴垂直时与题意不符,所以直线与轴不垂直,即直线的斜率存在,
设直线的方程为
代入椭圆的方程,化简得,解得,
代入直线的方程,得,
所以,的坐标为,
又直线的方程为,直线方程为,
联立解得,即,
而的坐标为,
,
即为定值.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆为左右焦点,为短轴端点,长轴长为4,焦距为,且,的面积为.
(Ⅰ)求椭圆的方程
(Ⅱ)设动直线椭圆有且仅有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在求出点的坐标,若不存在.请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点务极点,轴正半轴为极轴建立极坐标系,曲线,
(1)求曲线,的直角坐标方程;
(2)曲线和的交点为,,求以为直径的圆与轴的交点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com