精英家教网 > 高中数学 > 题目详情

机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)从第几年开始,该机床开始盈利(盈利额为正值);
(Ⅲ)使用若干年后,对机床的处理方案有两种:
(1)当年平均盈利额达到最大值时,以30万元价格处理该机床;
(2)当盈利额达到最大值时,以12万元价格处理该机床.
请你研究一下哪种方案处理较为合理?请说明理由.

(Ⅰ) ;(Ⅱ)从第3年开始盈利;(Ⅲ)方案Ⅰ比较合理.

解析试题分析:(Ⅰ)使用x年的总收入为,每年支付的维修保养费用构成一等差数列,由等差数列求和公式可得使用x年的总支出,总收入减去总支出便可得使用x年后数控机床的盈利额,从而得y与x之间的函数关系式.
(Ⅱ)解不等式便可得的范围,从而知道从从第几年开始盈利.
(Ⅲ))(1)年平均盈利额为:
可用重要不等式求出其最大值,从而可确定什么时候年平均盈利额达到最大值,可求出工厂获得的总利润.
(2)盈利额y=-2x2+40x-98是一个二次函数,可通过配方求出其最大值,从而可确定什么时候盈利额达到最大值,可求出工厂获得的总利润.
将二者进行比较,便知哪个方案更合理.
试题解析:(Ⅰ)依题得(xN*).    3分
(Ⅱ)解不等式.
.又∵xN*,∴3≤x≤17,故从第3年开始盈利.     7分
(Ⅲ)(1)年平均盈利额为:
,当且仅当时,即x=7时等号成立.
所以到2008年,年平均盈利额达到最大值,工厂共获利12×7+30=114万元.
(2)盈利额y=-2x2+40x-98=-(x-10)2+102,当x=10时,ymax=102.
故到2011年,盈利额达到最大值,工厂获利102+12=114万元 .        
盈利额达到的最大值相同,而方案Ⅰ所用的时间较短,故方案Ⅰ比较合理.        12分
考点:1、函数的应用;2、函数的最值;3、重要不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

命题p:关于x的不等式,对一切恒成立;命题q:函是增函数.若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值化简:
(Ⅰ)
(Ⅱ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)若的定义域是,求实数的取值范围及的值域;
(2)若的值域是,求实数的取值范围及的定义域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,解不等式
(2)若函数有最大值,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)求f(x)的单调区间;
(2)求f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某生态园欲把一块四边形地辟为水果园,其中.若经过上一点上一点铺设一条道路,且将四边形分成面积相等的两部分,设

(1)求的关系式;
(2)如果是灌溉水管的位置,为了省钱,希望它最短,求的长的最小值;
(3)如果是参观路线,希望它最长,那么的位置在哪里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若是函数的极值点,求的值;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a为实数,记函数的最大值为
(1)设t=,求t的取值范围,并把f(x)表示为t的函数m(t) ;
(2)求 ;
(3)试求满足的所有实数a.

查看答案和解析>>

同步练习册答案