精英家教网 > 高中数学 > 题目详情

如图,某生态园欲把一块四边形地辟为水果园,其中.若经过上一点上一点铺设一条道路,且将四边形分成面积相等的两部分,设

(1)求的关系式;
(2)如果是灌溉水管的位置,为了省钱,希望它最短,求的长的最小值;
(3)如果是参观路线,希望它最长,那么的位置在哪里?

(1);(2);(3)P点在B处,Q点在E处.

解析试题分析:(1)由题目条件可求出,延长BD、CE交于点A,则由得出结论,于是可知的面积,而它的面积又可用表示出来,于是问题得到解决;(2)中利用余弦定理,可将的长度用表示,再利用(1)的结果消去,则得到关于的函数关系式,然后利用基本不等式或求函数最值的一般方法求出函数的最小值或最大值,要注意函数的定义域;(3)思路同(2).

试题解析:(1)易知,延长BD、CE交于点A,则,则
.           4分
(2)
          6分
,即时,
.                  8分
(3)令,   10分

,令得,,                   12分
上是减函数,在上是增函数,
,PQmax = 2,                14分
此时,P点在B处,Q点在E处.         16分
考点:函数的应用、基本不等式、函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义在上的单调函数满足,且对任意都有
(1)求证:为奇函数;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=a|x|+ (a>0,a≠1)
(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
(2)设函数g(x)=" f(" x),x∈[ 2,+∞),满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)从第几年开始,该机床开始盈利(盈利额为正值);
(Ⅲ)使用若干年后,对机床的处理方案有两种:
(1)当年平均盈利额达到最大值时,以30万元价格处理该机床;
(2)当盈利额达到最大值时,以12万元价格处理该机床.
请你研究一下哪种方案处理较为合理?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求函数的单调区间
(2)若函数有两个零点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象上一点处的切线方程为.
(1)求的值;
(2)若方程内有两个不等实根,求的取值范围(其中为自然对数的底数);(3)令,若的图象与轴交于(其中),的中点为,求证:处的导数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.其中
(1)若函数的图像的一个公共点恰好在轴上,求的值;
(2)若是方程的两根,且满足,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数,当时,,且对任意的 ,有
(Ⅰ)求证:
(Ⅱ)求证:对任意的,恒有
(Ⅲ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是常数)在区间上有
(1)求的值;
(2)若时,求的取值范围;

查看答案和解析>>

同步练习册答案