精英家教网 > 高中数学 > 题目详情

定义在上的单调函数满足,且对任意都有
(1)求证:为奇函数;
(2)若对任意恒成立,求实数的取值范围.

(1)证明见试题解析;(2)

解析试题分析:(1)这是抽象函数问题,要证明它是奇函数,当然要根据奇函数的定义,证明,由此在已知式里设,从而有,因此我们还要先求出,这个只要设或者有一个为0即可得,故可证得为奇函数;(2)不等式可以利用为奇函数的结论,变形为,再利用函数的单调性去掉符号“”,转化为关于的不等式恒成立问题,即对任意成立,这时还需要用换元法(设)变化二次不等式怛成立,当然不要忘记的取值范围.
试题解析:(Ⅰ)证明:∵         ①
,代入①式,得
,代入①式,得,又
则有对任意成立,
所以是奇函数.                      4分
(Ⅱ)解:,即,又上是单调函数,
所以上是增函数.
又由(1)是奇函数.
,即对任意成立.
,问题等价于对任意恒成立.   8分
其对称轴.
时,即时,,符合题意;       10分
时,对任意恒成立
解得                     12分
综上所述,对任意恒成立时,
实数的取值范围是:.                 13分
考点:(1)奇函数的定义;;(2)不等式恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知偶函数满足:当时,,当时,.
(1)求当时,的表达式;
(2)试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)计算:
(2)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题p:关于x的不等式,对一切恒成立;命题q:函是增函数.若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(Ⅰ)解不等式
(Ⅱ)设集合,集合,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设不等式的解集为M,求当x∈M时函数的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.
(Ⅰ)求,,,的值;
(Ⅱ)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值化简:
(Ⅰ)
(Ⅱ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某生态园欲把一块四边形地辟为水果园,其中.若经过上一点上一点铺设一条道路,且将四边形分成面积相等的两部分,设

(1)求的关系式;
(2)如果是灌溉水管的位置,为了省钱,希望它最短,求的长的最小值;
(3)如果是参观路线,希望它最长,那么的位置在哪里?

查看答案和解析>>

同步练习册答案