精英家教网 > 高中数学 > 题目详情

设不等式的解集为M,求当x∈M时函数的最大、最小值.

最小值为,最大值为8.

解析试题分析:将看成一个整体,由不等式得出,从而得到集合;将化简得到一个关于的二次函数,问题转化成二次函数在某个区间上的最值问题.
试题解析:由,    2分
解得:,                4分
所以,                   5分
所以.                 6分
=,          8分
,则.              9分
所以上单调递减,          10分
所以当时取最小值为,当取,.          13分
考点:二次不等式的解法,对数的运算性质,二次函数在某固定区间上的最值,转化与化归思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.
(1)求这次行车总费用关于的表达式;
(2)当为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校课外兴趣小组的学生为了给学校边的一口被污染的池塘治污,他们通过实验后决定在池塘中投放一种能与水中的污染物质发生化学反应的药剂.已知每投放个单位的药剂,它在水中释放的浓度(克/升)随着时间(天)变化的函数关系式近似为,其中若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的单调函数满足,且对任意都有
(1)求证:为奇函数;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数且  )的图象经过点.
(1)求的解析式;
(2)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的定义域;
(2)若关于的不等式的解集是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数图象上一点处的切线方程为.
(1)求的值;
(2)若方程内有两个不等实根,求的取值范围(其中为自然对数的底数);(3)令,若的图象与轴交于(其中),的中点为,求证:处的导数

查看答案和解析>>

同步练习册答案