精英家教网 > 高中数学 > 题目详情
(本小题10分)
当m取何值时,直线L:y=x+m与椭圆9x2+16y2=144相切、相交、相离.
解:将y=x+m代入9x2+16y2=144中,得
9x2+16(x+m)2=144.
整理,得25x2+32mx+16m2-144=0.
∵△=(32m)2-4·25·(16m2-144)=-576m2+14400,
∴当△>0,即-5<m<5时,直线L与椭圆相交.
当△=0,即m=土5时,直线L与椭圆相切.
当△<O,即m>5或m<-5时,直线L与椭圆相离.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直角坐标系中,椭圆的左、右焦点分别为. 其中也是抛物线的焦点,点在第一象限的交点,且
(Ⅰ)求的方程;
(Ⅱ)若过点的直线交于不同的两点.之间,试求面积之比的取值范围.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2;且
在椭圆C上.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A、B两点,且△AF2B的面积为,求以F2为圆
心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
的两个顶点坐标分别是,顶点A满足.
(1)求顶点A的轨迹方程;
(2)若点在(1)轨迹上,求的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知焦点为的椭圆经过点, 直线过点与椭圆交于两点, 其中为坐标原点.
(1) 求椭圆的方程;  (2) 求的范围; 
(3) 若与向量共线, 求的值及的外接圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点坐标是(   )
A.(±5,0)B.(0,±5)C.(0,±12)D.(±12,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知的顶点B、C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则的周长是.           
A.             B. 6            C.             D. 12   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
椭圆E:与直线相交于A、B两点,且OA丄OB(O为坐标原点).
(I)求椭圆E与圆的交点坐标:
(II)当时,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正六边形的两个顶点为椭圆的两个
焦点,其余4个顶点在椭圆上,则该椭圆的离心率为_______.

查看答案和解析>>

同步练习册答案