精英家教网 > 高中数学 > 题目详情
如图,正六边形的两个顶点为椭圆的两个
焦点,其余4个顶点在椭圆上,则该椭圆的离心率为_______.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆短轴的一个端点,离心率.过作直线与椭圆交于另一点,与轴交于点不同于原点),点关于轴的对称点为,直线轴于点
(Ⅰ)求椭圆的方程;
(Ⅱ)求 的值.
[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分16分)
如图,已知圆是椭圆的内接△的内切圆, 其中为椭圆的左顶点.

(1)求圆的半径;
2)过点作圆的两条切线交椭圆于两点,


 
判断直线与圆的位置关系并说明理由.

         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)
当m取何值时,直线L:y=x+m与椭圆9x2+16y2=144相切、相交、相离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交椭圆于两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当直线的斜率为1时,求的面积;
(Ⅲ)若以为邻边的平行四边形是矩形,求满足该条件的直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
分别是椭圆的左右焦点。
(1)设椭圆上点到两点距离和等于,写出椭圆的方程和焦点坐标;
(2)设是(1)中所得椭圆上的动点,求线段的中的轨迹方程;
(3)设点是椭圆上的任意一点,过原点的直线与椭圆相交于两点,当直线 , 的斜率都存在,并记为 ,试探究的值是否与点及直线有关.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左右焦点为F1,F2,点P-在椭圆上,若P,F1,F2是一个直角三角形的三个顶点,则点P到x轴的距离是          (   )
A.B.3C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是等腰直角三角形,则这个椭圆的离心率是(    )
A、          B、           C、         D、     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


三、解答题(本大题共有3个小题,共40分。解答应写出文字说明、演算步骤或证明过程。)
13. (本小题满分13分)
已知命题:方程表示焦点在轴上的椭圆,命题:关于x的方程无实根,若“”为假命题,“”为真命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案