精英家教网 > 高中数学 > 题目详情
19.$\int_0^π{cosxdx}$=(  )
A.1B.-2C.0D.π

分析 根据定积分的计算法则计算即可.

解答 解:$\int_0^π{cosxdx}$=sinx|${\;}_{0}^{π}$=sinπ-sin0=0,
故选:C

点评 本题考查了定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若抛物线y2=2px(p>0)的焦点在圆C:(x+2)2+y2=16上,则p的值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=lnx-ax,g(x)=ex-3ax,其中a为实数,若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,则a的取值范围是(  )
A.($\frac{e}{3}$,+∞)B.[$\frac{e}{3}$,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}|lnx|,0<x≤e\\ f(2e-x),e<x<2e\end{array}$设方程f(x)=2-x+b(b∈R)的四个实根从小到大依次为x1,x2,x3,x4,对于满足条件的任意一组实根,下列判断中一定成立的是(  )
A.x1+x2=2B.e2<x3x4<(2e-1)2C.0<(2e-x3)(2e-x4)<1D.1<x1x2<e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若数列{an}是正项数列,且$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+…+$\sqrt{{a}_{n}}$=n2+n,则a1+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$等于(  )
A.2n2+2nB.n2+2nC.2n2+nD.2(n2+2n)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设全集U={0,-1,-2,-3,-4},集合M={0,-1,-2},那么∁UM为(  )
A.{0}B.{-3,-4}C.{-1,-2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知经过点P(3,m)和点Q(m,-2)的直线的斜率等于2,则m的值为(  )
A.$\frac{4}{3}$B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为$4(\sqrt{2}+1)$,一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知云台山景区对拥挤等级与每日游客数量(单位:百人)的关系有如下规定:当n∈[0,100)时,拥挤等级为“优”;当n∈[100,200)时,拥挤等级为“良”;当n∈[200,300)时,拥挤等级为“拥挤”;当n≥300时,拥挤等级为“严重拥挤”.该景区对9月份的游客数量作出如图的统计数据.
(1)下面是根据统计数据得到的频率分布直方表,求出a,b,c的值,并估计该景区9月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);
游客数量
(单位:百人)
[0,100)[100,200)[200,300)[300,400)
天数a104c
频率b$\frac{1}{3}$$\frac{2}{15}$$\frac{1}{30}$
(2)某人选择在9月1日至9月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.

查看答案和解析>>

同步练习册答案