精英家教网 > 高中数学 > 题目详情

【题目】按照下列要求,分别求有多少种不同的方法?

15个不同的小球放入3个不同的盒子;

25个不同的小球放入3个不同的盒子,每个盒子至少一个小球;

35个相同的小球放入3个不同的盒子,每个盒子至少一个小球;

45个不同的小球放入3个不同的盒子,恰有1个空盒.

【答案】1243种(2150种(36种(490

【解析】

1)利用分步乘法计数原理可求;

2)先把5个小球分为三组,然后再放入三个盒中可得;

3)利用隔板法进行求解,5个相同的小球,分成3组共有种方法;

4)先把5个小球分为两组,然后再放入三个盒中可得.

15个不同的小球放入3个不同的盒子,每个小球都有3种可能,利用乘法原理可得不同的方法有

25个不同的小球放入3个不同的盒子,每个盒子至少一个小球,先把5个小球分组,有两种分法:221311;再放入3个不同的盒子,故不同的方法共有

35个相同的小球放入3个不同的盒子,每个盒子至少一个小球,类似于在5个小球间的空隙中,放入2个隔板,把小球分为3组,故不同的方法共有

45个不同的小球放入3个不同的盒子,恰有一个空盒,先把5个小球分2组,有两种分法:32、0;41、0;再放入3个不同的盒子,故不同的方法共有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市移动公司为了提高服务质量,决定对使用A,B两种套餐的集团用户进行调查,准备从本市个人数超过1000人的大集团和8个人数低于200人的小集团中随机抽取若干个集团进行调查,若一次抽取2个集团,全是小集团的概率为

求n的值;

若取出的2个集团是同一类集团,求全为大集团的概率;

若一次抽取4个集团,假设取出小集团的个数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其中是数列的前项和.

1)若数列是首项为,公比为的等比数列,求数列的通项公式;

2)若,求数列的通项公式;

3)在(2)的条件下,设,求证:数列中的任意一项总可以表示成该数列其他两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最大时,点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面为等边三角形,且垂直于底面分别是的中点.

1)证明:平面平面

2)已知点在棱上且,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃B点表示四月的平均最低气温约为5℃下面叙述不正确的是 ( )

A. 各月的平均最低气温都在0℃以上

B. 七月的平均温差比一月的平均温差大

C. 三月和十一月的平均最高气温基本相同

D. 平均最高气温高于20℃的月份有5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在学习强国活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为,市民之间选择意愿相互独立.

1)从问卷市民中随机抽取4人,记总得分为随机变量,求的分布列和数学期望;

2)(i)若从问卷市民中随机抽取人,记总分恰为分的概率为,求数列的前10项和;

(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为分的概率为(比如:表示累计得分为1分的概率,表示累计得分为2分的概率,),试探求之间的关系,并求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的日是全国爱牙日,为了迎接这一节日,某地区卫生部门成立了调查小组,调查“常吃零食与患龋齿的关系”,对该地区小学六年级名学生进行检查,按患龋齿的不患龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有名,常吃零食但不患龋齿的学生有名,不常吃零食但患齲齿的学生有名.

1)完成答卷中的列联表,问:能否在犯错率不超过的前提下,认为该地区学生的常吃零食与患龋齿有关系?

2名区卫生部门的工作人员随机分成两组,每组人,一组负责数据收集,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,判断上的单调性并加以证明;

2)若,求的取值范围.

查看答案和解析>>

同步练习册答案