精英家教网 > 高中数学 > 题目详情
1.已知函数f′(x)=ax+$\frac{b}{x}$+2-2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)证明:1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2n-1}$>$\frac{1}{2}$ln(2n+1)+$\frac{n}{2n+1}$(n∈N*

分析 (1)利用函数在点(1,f(1))处的切线与直线y=2x+1平行,得到f'(1)=2,然后利用导数确定a,b满足的关系式.
(2)构造函数g(x)=f(x)-2lnx=ax+$\frac{a-2}{x}$+2-2a-2lnx,x∈[1,+∞),利用导数求函数的最值即可.
(3)取a=1得x-$\frac{1}{x}$≥2lnx令x=$\frac{2n+1}{2n-1}$>1得$\frac{2n+1}{2n-1}$-$\frac{2n-1}{2n+1}$>2ln$\frac{2n+1}{2n-1}$,即$\frac{1}{2n-1}$>$\frac{1}{2}$ln$\frac{2n+1}{2n-1}$+$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),上式中n=1,2,3,…,n,然后n个不等式相加得结论.

解答 (1)解:函数的导数为f′(x)=a-$\frac{b}{{x}^{2}}$,
因为f(x)=ax+$\frac{b}{x}$+2-2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
所以f'(1)=2,即f'(1)=a-b=2,所以b=a-2.
(2)解:因为b=a-2,所以f(x)=ax+$\frac{a-2}{x}$+2-2a,
若f(x)≥2lnx,则f(x)-2lnx≥0,
设g(x)=f(x)-2lnx=ax+$\frac{a-2}{x}$+2-2a-2lnx,x∈[1,+∞).
则g(1)=0,g′(x)=$\frac{a(x-1)(x-\frac{2-a}{a})}{{x}^{2}}$,
①当0<a<1时,$\frac{2-a}{a}$>1,若1<x<$\frac{2-a}{a}$,则g'(x)<0,此时g(x)在[1,+∞)上单调递减,所以g(x)<g(1)=0,即f(x)≥2lnx在[1,+∞)不恒成立.
②若a≥1,$\frac{2-a}{a}$≤1,当x>1时,g'(x)>0,g(x)在[1,+∞)上单调递增,又g(1)=0,
所以此时f(x)≥2lnx.
综上所述,所求a的取值范围是[1,+∞).
(3)证明:由(2)知当a≥1时,f(x)≥2lnx在[1,+∞)上恒成立.
取a=1得x-$\frac{1}{x}$≥2lnx
令x=$\frac{2n+1}{2n-1}$>1得$\frac{2n+1}{2n-1}$-$\frac{2n-1}{2n+1}$>2ln$\frac{2n+1}{2n-1}$,
即$\frac{1}{2n-1}$>$\frac{1}{2}$ln$\frac{2n+1}{2n-1}$+$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
上式中n=1,2,3,…,n,然后n个不等式相加得1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2n-1}$>$\frac{1}{2}$ln(2n+1)+$\frac{n}{2n+1}$(n∈N*).

点评 本题主要考查导数的几何意义,以及利用导数研究函数的性质,考查学生的运算能力.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C1的极坐标方程为ρ=4sinθ,圆C2的极坐标方程为$ρ=4cos(θ+\frac{π}{6})$,已知C1与C2交于A、B两点,其中点B(xB,yB)位于第一象限.
(Ⅰ)求点A和点B的极坐标;
(Ⅱ)设圆C1的圆心为C1,点P是直线BC1上的动点,且满足$\overrightarrow{BP}=m\overrightarrow{B{C_1}}$,若直线C1P的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}λ\\ y=1+\frac{1}{2}λ\end{array}$(λ为参数)的动点,则m:λ的值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列1,1,2,3,5,8,x,21,34,45中,x等于13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点F($\sqrt{2}$,0)其短轴上的一个端点到F的距离为$\sqrt{3}$
(1)求椭圆C的;离心率及其标准方程
(2)点P(x0,y0)是圆G:x2+y2=4上的动点,过点P作椭圆C的切线l1,l2交圆G于点M,N,求证:线段MN的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆O:x2+y2=16,点P(1,0),过P点交圆O于A,B两点.
(1)若以AB为直径的圆经过点C(4,2),求直线l的方程;
(2)若2|AP|=3|BP|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=$\left\{\begin{array}{l}{{2}^{|x-1|}-1,0<x≤2}\\{\frac{1}{2}f(x-2),x>2}\end{array}\right.$,则函数g(x)=4f(x)-1的零点个数为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x+$\frac{1}{x}$+3,则对于y=f(x)在x<0时,下列说法正确的是(  )
A.有最大值7B.有最大值-7C.有最小值7D.有最小值-7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆柱的底面直径与高都等于球的直径,则球的表面积为=(填“>”,“<”,“=”)圆柱的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知矩形ABCD,E、F分别是BC、AD的中点,且BC=2AB=2,现沿EF将平面ABEF折起,使平面ABEF⊥平面EFDC,则三棱锥A-FEC的外接球的体积为(  )
A.$\frac{{\sqrt{3}}}{3}π$B.$\frac{{\sqrt{3}}}{2}π$C.$\sqrt{3}π$D.$2\sqrt{3}π$

查看答案和解析>>

同步练习册答案