精英家教网 > 高中数学 > 题目详情
10.圆柱的底面直径与高都等于球的直径,则球的表面积为=(填“>”,“<”,“=”)圆柱的侧面积.

分析 设球的半径为R,易求出满足条件的球的表面积和圆柱的侧面积,观察判断.

解答 解:设球的半径为R,
则球的表面积S=4πR2
所以圆柱的底面半径为R,高为2R,
则圆柱的侧面积S=2πR×2R=4πR2
所以球的表面积等于圆柱的侧面积.
故答案为:=

点评 本题考查球的表面积公式与圆柱的侧面积公式,根据公式求出球和圆柱的面积是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.
(1)圆C的标准方程为(x-1)2+(y-$\sqrt{2}$)2=2;
(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:
①$\frac{|NA|}{|NB|}$=$\frac{|MA|}{|MB|}$;  ②$\frac{|NB|}{|NA|}$-$\frac{|MA|}{|MB|}$=2;  ③$\frac{|NB|}{|NA|}$+$\frac{|MA|}{|MB|}$=2$\sqrt{2}$.
其中正确结论的序号是①②③.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f′(x)=ax+$\frac{b}{x}$+2-2a(a>0)的图象在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)证明:1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2n-1}$>$\frac{1}{2}$ln(2n+1)+$\frac{n}{2n+1}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.sinα+cosα=$\frac{1}{5}$,求sinα-cosα及tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:$\frac{1}{1×4}+\frac{1}{4×7}+\frac{1}{7×10}$+…+$\frac{1}{(3n-2)(3n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若实数x,y满足$\left\{\begin{array}{l}{x+y≤3}\\{x+2y≥3}\\{2x+y≥3}\end{array}\right.$,则x2+5y2的取值范围为[5,45].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.当且仅当x∈(a,b)∪(c,d)(其中b≤c)时,函数f(x)=2x2+x+2的图象在函数g(x)=|2x+1|+|x-t|图象的下方,则b-a+d-c的取值范围为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a=log4$\frac{1}{3}$,b=lg5,c=${∫}_{0}^{1}$xdx,则实数a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解方程:cos2x=sin2x-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案