精英家教网 > 高中数学 > 题目详情

【题目】某城市的电视发射搭CD建在市郊的一座小山上,如图所示,小山高BC30米,在地平面上有一点A,测得AC两点间距离为50.

1)如果从点A观测电视发射塔的视角∠CAD=,求这座电视发射塔的高度;

2)点A在何位置时,角∠CAD最大.(参考数据:

【答案】1;(2)点距离点为

【解析】

1)首先由已知可得,设,再根据锐角三角函数与两角和的正切公式计算可得;

2)设点的距离为,再根据两角差的正切公式及锐角三角函数的定义得到,令,利用基本不等式求出的最小值,即可得到的最大值;

解:(1,所以,设

塔高

2)设点的距离为

,即

,因为,所以

所以当且仅当时,即时, 取得最大,

是单调递增函数,

所以点距离点为时,取得最大值;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率.

(1)求的方程;

(2)设直线经过点且与相交于两点(异于点),记直线的斜率为,直线的斜率为,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数满足,其中.实数满足.

1)若,且为真,求实数的取值范围;

2)非是非的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2017年1月18日开始,支付宝用户可以通过“扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福,敬业福),除夕夜22:18,每一位提前集齐五福的用户都将获得一份现金红包.某高校一个社团在年后开学后随机调查了80位该校在读大学生,就除夕夜22:18之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:

1)根据如上的列联表,能否在犯错误的概率不超过0.05的前提下,认为“集齐五福与性别有关”?

2)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;

3)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.

参考公式 .

附表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线和二次函数,若直线与二次函数的图象交于两点.

1)求直线轴上的截距

2)若点的坐标为,求点的坐标;

3)当时,是否存在直线与圆相切?若存在,求线段的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)设,证明:在区间内存在唯一的零点;

2)设,若对任意,有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

1)证明:函数在区间内必有局部对称点;

2)若函数R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,).

1)求的值;

2)是否存在实数,使得数列为等差数列?若存在,求出的值;若不存在,请说明理由;

3)设数列的前n项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面为菱形,且

)求证:

)若,求二面角的余弦值。

查看答案和解析>>

同步练习册答案