精英家教网 > 高中数学 > 题目详情
如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角∠CAD=45°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为∠APB=α,∠DPC=β,问点P在何处时,tan(α+β)最小?
考点:解三角形的实际应用
专题:应用题,解三角形
分析:(1)作AN⊥CD于N,问题转化为求△ACD边CD上的高.设AN=x,只要建立起关于x的方程,则问题可解.
(2)利用(1)设出BP为t,直接求出α、β的正切值,然后求出∠ADB的正切值,利用基本不等式求解表达式的最小值,推出BP是值即可.
解答: 解:(1)如图作AN⊥CD于N.
∵AB∥CD,AB=9,CD=15,∴DN=6,NC=9.
设AN=x,∠DAN=θ,
∵∠CAD=45°,∴∠CAN=45°-θ.
在Rt△ANC和Rt△AND中,
∵tanθ=
6
x
,tan(45°-θ)=
9
x

9
x
=tan(45°-θ)=
1-tanθ
1+tanθ

代入化简整理得x2-15x-54=0,
解得x1=18,x2=-3(舍去).
∴BC的长度是18m.
(2)设BP=t,则PC=18-t,tanα=
9
t
,tanβ=
15
18-t

∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
9
t
+
15
18-t
1-
9
t
×
15
18-t
=-
6
t+27+
1350
t+27
-72
≥-
6
2
1350
-72

当且仅当t+27=
1350
t+27
,即t=15
6
-27时,tan(α+β)最小.
即P在距离B15
6
-27m时,tan(α+β)最小.
点评:考查了解三角形的实际应用.解这类题的关键是建立数学模型,设出恰当的角.考查两角和与差的三角函数,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数
5
i-2
的共轭复数对应的点在复平面的(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

一批型号相同的产品,有2件次品,5件正品,每次抽一件测试,直到将两件次品全部区分为止.假设抽后不放回,则第5次测试后停止的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式是an=n2-7n+6.
(1)这个数列的第4项是多少?
(2)150是不是这个数列的项?若是这个数列的项,它是第几项?
(3)该数列从第几项开始各项都是正数?

查看答案和解析>>

科目:高中数学 来源: 题型:

某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75,
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为X,求随机变量X的分布列,均值和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

比较
5
-
7
11
-
13
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,若a2=9,a5=3,
(Ⅰ)求数列{an}的通项公式;       
(Ⅱ)求Sn达到最大值及此时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a2=
1
3
,an=
1
3
(1-an-1),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}单调递增,a1=1,且a2,a3+4,2a7+1构成等比数列.
(1)求数列{an}的公差d;
(2)设数列{an}的前n项和为Sn,求证:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
<2(n∈N,且n>1).

查看答案和解析>>

同步练习册答案