精英家教网 > 高中数学 > 题目详情
2.${(\frac{{\sqrt{x}}}{3}-\frac{3}{x})^9}$的展开式中常数项等于-$\frac{28}{9}$.

分析 先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.

解答 解:${(\frac{{\sqrt{x}}}{3}-\frac{3}{x})^9}$的展开式的通项公式为Tr+1=${C}_{9}^{r}$•${(\frac{1}{3})}^{9-r}$•(-3)r•${x}^{\frac{9-3r}{2}}$,
令$\frac{9-3r}{2}$=0,求得r=3,可得展开式中常数项等于${C}_{9}^{3}$•${(\frac{1}{3})}^{6}$•(-3)3=-$\frac{28}{9}$,
故答案为:-$\frac{28}{9}$.

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知 ${(\sqrt{x}+\frac{a}{{\sqrt{x}}})^6}$的展开式中含 x2项的系数为12,则展开式的常数项为160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x,y满足$\left\{\begin{array}{l}x+2y≤3\\ 2x+y≤3\\ x≥0\\ y≥0\end{array}\right.$,则x+y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{{t•{3^x}-1}}{{{3^x}+1}}({t∈R})$是奇函数.
(1)求t的值;
(2)求f(x)的反函数f-1(x);
(3)对于任意的m>0,解不等式:f-1(x)>log3$\frac{1+x}{m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.证明二项式定理(a+b)n=$\sum_{r=0}^{n}$C${\;}_{n}^{r}$an-rbr,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1和x=-1处分别取得最大值和最小值,且对于?x1,x2∈[-1,1](x1≠x2)都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则函数f(x+1)一定是(  )
A.周期为2的偶函数B.周期为2的奇函数C.周期为4的奇函数D.周期为4的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.判断下列各命题是否成立,并简述理由:
(1)若a>b,则ac<bc;
(2)若ac2<bc2,则a>b;
(3)若a>b,则2-xa>2-xb;
(4)若a>b,$\frac{1}{a}$>$\frac{1}{b}$,则a>0,b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在△ABC中,若sinA:sinB:sinC=2:3:4,则cosB=(  )
A.$\frac{11}{16}$B.-$\frac{11}{16}$C.$\frac{3}{16}$D.-$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x3+ax2-a2x+2
(1)当a=1,求曲线y=f(x)在点(1,f(1)处的切线方程
(2)当a≠0,求函数f(x)的单调区间
(3)不等式2x1nx≤f′(x)+a2+1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案