精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角ABC的对边分别为abc,且ba2+c2b2)=a2ccosC+ac2cosA.

1)求角B的大小;

2)若△ABC外接圆的半径为,求△ABC面积的最大值.

【答案】1B2

【解析】

1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B

2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.

1)因为ba2+c2b2)=ca2cosC+ac2cosA

,即2bcosBacosC+ccosA

由正弦定理可得,2sinBcosBsinAcosC+sinCcosAsinA+C)=sinB

因为所以

所以B

2)由正弦定理可得,b2RsinB2

由余弦定理可得,b2a2+c22accosB

a2+c2ac4,因为a2+c22ac

所以4a2+c2acac,当且仅当ac时取等号,即ac的最大值4

所以△ABC面积S即面积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数单调递增,,若对任意,存在,使得成立,则称上的“追逐函数”.若,则下列四个命题:①上的“追逐函数”;②若上的“追逐函数”,则;③上的“追逐函数”;④当时,存在,使得上的“追逐函数”.其中正确命题的个数为( )

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是年我国就业人口及劳动年龄人口(劳动年龄人口包含就业人口)统计表:

时间(年)

就业人口(万人)

劳动年龄人口(万人)

则由表可知(

A.年我国就业人口逐年减少

B.年我国劳动年龄人口逐年增加

C.年这年我国就业人口数量的中位数为

D.年我国劳动年龄人口中就业人口所占比重逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDA1B1C1D1中,底面ABCD是边长为2的正方形.

1)证明:A1C1平面ACD1

2)求异面直线CDAD1所成角的大小;

3)已知三棱锥D1ACD的体积为,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.

1)求的值;

2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?

文科生

理科生

合计

获奖

6

不获奖

合计

400

3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.

附:,其中.

.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxaxlnxaR.

1)若a2时,求函数fx)的单调区间;

2)设gx)=fx1,若函数gx)在上有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(1)求椭圆C的标准方程;

2)点P是椭圆上异于短轴端点AB的任意一点,过点P轴于Q,线段PQ的中点为M.直线AM与直线交于点ND为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术中有一题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马,”马主曰:“我马食半牛”,今欲衰偿之,问各出几何?其意:今有牛、马、羊吃了别人的禾苗,苗主人要求赔偿五斗粟,羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比例偿还,问羊的主人应赔偿______斗粟,在这个问题中牛主人比羊主人多赔偿______斗粟.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),其中.

1)在区间上,是否存在最小值?若存在,求出最小值;若不存在,请说明理由.

2)若函数的两个极值点为,证明:.

查看答案和解析>>

同步练习册答案