精英家教网 > 高中数学 > 题目详情
8.(理科)已知tanθ=2,则$tan(θ+\frac{π}{4})+cos2θ$=-$\frac{18}{5}$.

分析 由条件利用二倍角的余弦公式、两角和的正切公式,求得所给式子的值.

解答 解:已知tanθ=2,则$tan(θ+\frac{π}{4})+cos2θ$=$\frac{tanθ+1}{1-tanθ}$+$\frac{{cos}^{2}θ{-sin}^{2}θ}{{cos}^{2}θ{+sin}^{2}θ}$=$\frac{2+1}{1-2}$+$\frac{1{-tan}^{2}θ}{1{+tan}^{2}θ}$
=-3+$\frac{1-4}{1+4}$=-$\frac{18}{5}$,
故答案为:-$\frac{18}{5}$.

点评 本题主要考查二倍角的余弦公式、两角和的正切公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=x+1,g(x)=-$\frac{1}{x}$,则f(log23)+g(log62)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列各不等式:
(1)x2-3x≥0;
(2)x2-x-6<0;
(3)x2-x+5≤0;
(4)2x2+3x+2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.偶函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω为正整数,|φ|<$\frac{π}{2}$),且f(x)在($\frac{π}{6}$,$\frac{π}{3}$)上递减,则f(x)的周期不可能是(  )
A.B.πC.$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)=lg$\frac{1+{2}^{x}+{3}^{x}•a}{3}$(a∈R),如果当x∈(-∞,1)时f(x)有意义,则a的取值范围是[-1,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2则不等式xf(x)≤0的解集是{x|x≤-2,或x≥2,或x=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,已知向量$\overrightarrow{m}$=(AB,cosB),$\overrightarrow{n}$=(AC,cosC),若$\overrightarrow{m}$∥$\overrightarrow{n}$,则△ABC为(  )
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.两个非零向量$\overrightarrow{a}$、$\overrightarrow{b}$不共线.
(1)若$\overrightarrow{AB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{BC}$=2$\overrightarrow{a}$+8$\overrightarrow{b}$,$\overrightarrow{CD}$=3($\overrightarrow{a}$-$\overrightarrow{b}$),求证:A、B、D三点共线;
(2)求实数k使k$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$+k$\overrightarrow{b}$共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)的定义域D={x|x≠0},且满足对任意x都有:f(x1•x2)=f(x1)+f(x2
(1)求f(1),f(-1)的值.
(2)证明f(x)为偶函数;
(3)如果x>1时,f(x)>0,证明f(x)在(0,+∞)为增函数,并解不等式:$f(2-\frac{1}{x})+f(x)≤0$.

查看答案和解析>>

同步练习册答案