精英家教网 > 高中数学 > 题目详情
5.若函数f(x)=x+$\frac{k}{x}$在[1,3]上的最小值为t,若t≠2$\sqrt{k}$,则正数k的取值范围为(0,1)∪(9,+∞).

分析 运用基本不等式可得f(x)≥2$\sqrt{k}$,由等号成立的条件可得$\sqrt{k}$∉[1,3],继而求出k的最大值与最小值.

解答 解:由题意得:x>0,
∴f(x)=x+$\frac{k}{x}$≥2$\sqrt{k}$,
∵函数f(x)=x+$\frac{k}{x}$在[1,3]上的最小值为t,且t≠2$\sqrt{k}$,
当x=$\sqrt{k}$时,函数f(x)取得最小值2$\sqrt{k}$,
∴$\sqrt{k}$∉[1,3],
∴正数k的取值范围是(0,1)∪(9,+∞),
故答案为:(0,1)∪(9,+∞).

点评 本题考查了基本不等式的运用:求最值,考查了运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-kx,x∈R.
(1)若k=e,试确定函数f(x)的单调区间和极值;
(2)若f(x)在区间[0,2]上单调递增,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-kx(k∈R),g(x)=lnx.
(1)若函数y=f(x)与y=g(x)的图象有公共点,求实数k的取值范围;
(2)设函数h(x)=f(x)-g(x),?a,b>0(a≠b),若?c>0,使得h′(c)=$\frac{h(a)-h(b)}{a-b}$,求证:$\sqrt{ab}$<c<$\frac{a+b}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.a,b,c是△ABC的三条边长,满足a4+b4=c4,则△ABC的形状为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.阅读如图的程序框图,运行相应的程序,则输出的值为(  )
A.81B.27C.16D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则f(π)=(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x≤1}\\{{2^x}+ax,x>1}\end{array}}$,若f(f(1))=4a,则实数a=2,函数f(x)的单调增区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$(a>0,且a≠1)的值域为(-∞,+∞),则实数a的取值范围是(  )
A.(3,+∞)B.(0,$\frac{1}{4}$]C.(1,3)D.[$\frac{1}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四个图形中,能表示函数y=f(x)的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案