分析 求出f(1)=2,再求f(2),解方程可得a;求出分段函数式,求出增区间.
解答 解:函数f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x≤1}\\{{2^x}+ax,x>1}\end{array}}$,
可得f(1)=2,f(f(1))=f(2)=4+2a=4a,
解得a=2;
f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{{2}^{x}+2x,x>1}\end{array}\right.$的增区间为(0,1)∪[1,+∞)
=(0,+∞).
故答案为:2,(0,+∞)
点评 本题考查分段函数的函数值和单调区间,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com