【题目】在平面直角坐标系xOy中,已知椭圆C:的离心率,F1,F2分别为左、右焦点,过F1的直线交椭圆C于P,Q两点,且的周长为8.
(1)求椭圆c的方程;
(2)设过点M(3,0)的直线交椭圆C于不同两点A,B,N为椭圆上一点,且满足(O为坐标原点),当时,求实数t的取值范围.
【答案】(1);(2)
【解析】
(1)利用已知条件,求出a,b,即可得到椭圆方程;(2)设A(x1,y1),B(x2,y2),N(x,y),AB的方程为y=k(x﹣3),联立直线和椭圆,整理得(1+4k2)x2﹣24k2x+36k2﹣4=0.利用判别式以及韦达定理,结合=t(x,y),求出N的坐标,代入椭圆方程,利用弦长公式,化简不等式,求出K的范围,然后求解t的范围.
(1)∵,∴.
又∵,∴,∴,∴椭圆的方程是.
(2)设,,,的方程为,
由,整理得.
由,得.
∵,,
∴ ,
则, .
由点在椭圆上,得,化简得. ①
又由,即,
将,代入得,
化简,得,则,,∴. ②
由①,得,联立②,解得.
∴或,即.
科目:高中数学 来源: 题型:
【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(1)求X的分布列;
(2)若要求P(X≤n)≤0.5,确定n的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.
(1)求p的值.
(2)线段AB的垂直平分线l与x轴的交点是否为定点?若是,求出交点坐标;若不是,说明理由.
(3)求直线l的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2+bx+1的导数满足,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设,求函数g(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆=1(a>b>0)的左、右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C,D分别是椭圆的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:为定值.
(3)在(2)的条件下,试问x轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP,MQ的交点?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是( )
A.[﹣ ,2]
B.[﹣ , ]
C.[﹣2 ,2]
D.[﹣2 , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=excosx﹣x.(13分)
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com