【题目】已知函数
,
.
(Ⅰ)若
,求曲线
在点
处的切线方程;
(Ⅱ)当
时,函数
的两个极值点为
,
,且
.求证:
.
【答案】(1)
;(2)证明见解析.
【解析】试题分析:(1)对
求导数,求出
可得切线斜率,因为切点为
有,根据点斜式可得切线方程;(2)
在
上有两个不等的实根,即
有两个不等的实根
,
,可得
,且
,
,令
,利用导数研究函数的单调性,求其最小值,进而可得结论.
由
的关系,用
把
表示出来,求出
的表达式与取值范围即可得到结论.
(Ⅰ)因为
,所以
,
,于是有:
,
,切点为
.
故切线方程为
.
(Ⅱ)因为函数
有两个极值点,所以
在
上有两个不等的实根,
即
有两个不等的实根
,
,可得
,且
,
因为
,则
,可得
.
,
,
令
,
,
,
,又
,
时,
,
而
,故
在
上恒成立,
所以
在
上恒成立,
即
在
上单调递减,
所以
,得证.
【方法点晴】本题主要考查利用导数求曲线切线以及利用导数研究函数的单调性、函数的极值以及不等式证明问题,属于难题.求曲线切线方程的一般步骤是:(1)求出
在
处的导数,即
在点
出的切线斜率(当曲线
在
处的切线与
轴平行时,在 处导数不存在,切线方程为
);(2)由点斜式求得切线方程
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l过点P (3,
)且倾斜角为
.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求直线l的一个参数方程和圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B,求
的值.
(2)已知函数
.
(Ⅰ)求函数
的最小值
;
(Ⅱ)若正实数
满足
,且
对任意的正实数
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在
中,
为直角,
.沿
的中位线
,将平面
折起,使得
,得到四棱锥
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求三棱锥
的体积;
(Ⅲ)
是棱
的中点,过
做平面
与平面
平行,设平面
截四棱锥
所得截面面积为
,试求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 | 摸出红、蓝球个数 | 获奖金额 |
一等奖 | 3红1蓝 | 200元 |
二等奖 | 3红0蓝 | 50元 |
三等奖 | 2红1蓝 | 10元 |
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额X的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知图①②都是表示输出所有立方小于1 000的正整数的程序框图,则图中应分别补充的条件为( )
![]()
![]()
① ②
A. ①n3≥1 000? ②n3<1 000?
B. ①n3≤1 000? ②n3≥1 000?
C. ①n3<1 000? ②n3≥1 000?
D. ①n3<1 000? ②n3<1 000?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,侧面
底面
,
为正三角形,
,
,点
,
分别为线段
、
的中点,
、
分别为线段
、
上一点,且
,
.
![]()
(1)确定点
的位置,使得
平面
;
(2)试问:直线
上是否存在一点
,使得平面
与平面
所成锐二面角的大小为
,若存在,求
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产
,
两种产品,根据市场调查与预测,
产品的利润与投资关系如图(1)所示;
产品的利润与投资的算术平方根成正比,其关系如图(2)所示(注:利润和投资单位:万元).
![]()
![]()
(1)分别将
,
两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到
万元资金,并将全部投入
,
两种产品的生产.问怎样分配这
万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:
公园 | 甲 | 乙 | 丙 | 丁 |
获得签名人数 | 45 | 60 | 30 | 15 |
(Ⅰ)求此活动中各公园幸运之星的人数;
(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
有兴趣 | 无兴趣 | 合计 | |
男 | 25 | 5 | 30 |
女 | 15 | 15 | 30 |
合计 | 40 | 20 | 60 |
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
临界值表:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
参考公式:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com