分析 (Ⅰ)若∠BAC=$\frac{π}{4}$,利用同角三角函数的基本关系求得sin∠ABC 的值,△ABC中,再利用正弦定理求得AC的长.
(Ⅱ)若BD=9,由条件求得sin∠BCD 的值.在△BCD中,根据cos∠BCD=$\frac{1}{3}$利用余弦定理求得CD的值,从而求得 S△BCD=$\frac{1}{2}$•6•9•sin∠BCD 的值.
解答 解:(Ⅰ)因为cos∠ABC=-$\frac{1}{3}$,∴∠ABC为钝角,sin∠ABC=$\sqrt{{1-cos}^{2}∠ABC}$=$\frac{2\sqrt{2}}{3}$,
在△ABC中,$\frac{BC}{sin∠BAC}=\frac{AC}{sin∠ABC}$,即 $\frac{6}{sin\frac{π}{4}}$=$\frac{AC}{\frac{2\sqrt{2}}{3}}$,解得AC=8.
(Ⅱ)因为AB∥CD,所以∠ABC+∠BCD=π,
故cos∠BCD=-cos∠ABC=$\frac{1}{3}$,
sin∠BCD=sin∠ABC=$\frac{2\sqrt{2}}{3}$.
在△BCD中,cos∠BCD=$\frac{1}{3}$=$\frac{36{+CD}^{2}-81}{2•6•CD}$,
整理得CD2-4CD-45=0,解得CD=9,
所以,S△BCD=$\frac{1}{2}$•6•9•sin∠BCD=$\frac{1}{2}•6•9•\frac{2\sqrt{2}}{3}$=18$\sqrt{2}$.
点评 本题主要考查同角三角函数的基本关系,正弦定理和余弦定理的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题 | |
| B. | 命题“p或q”为真命题,则命题p和命题q均为真命题 | |
| C. | 命题“?x0∈R,x02-x0>0”的否定是:“?x∈R,x2-x≤0” | |
| D. | “x>3”是“x>2”的充分不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com