精英家教网 > 高中数学 > 题目详情
12.在平面直角坐标系中,点A(0,2)和点B(3,5)到直线λ的距离都是3,则符合条件的直线λ共有(  )条.
A.1B.2C.3D.4

分析 把已知问题化归为两圆的公切线条数,只需判断两圆的位置关系即可.

解答 解:到点A(0,2)距离为3的直线,可看作以A为圆心3为半径的圆的切线,
同理到点B(3,5)距离为3的直线,可看作以B为圆心3为半径的圆的切线,
故所求直线为两圆的公切线,
又|AB|=$\sqrt{{3}^{2}+(5-2)^{2}}$=3$\sqrt{2}$<3+3=6,故两圆相交,公切线有2条,
故选:B.

点评 本题考查直线的方程,涉及圆与圆的位置关系,划归为公切线条数是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=5,$\overrightarrow{a}$•$\overrightarrow{b}$=15,则向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图.现拟定在各班中分数超过本班平均分的同学为“口语王”.
(Ⅰ)记甲班“口语王”人数为m,乙班“口语王”人数为n,比较m,n的大小;
(Ⅱ)随机从“口语王”中选取2人,记X为来自甲班“口语王”的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.三个数a=(${\frac{1}{e}}$)-1,b=2${\;}^{\frac{1}{2}}}$,c=log${\;}_{\frac{1}{2}}}$3的大小顺序为(  )
A.b<c<aB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2$\sqrt{3}$sin(${\frac{x}{2}$+$\frac{π}{4}}$)cos(${\frac{x}{2}$+$\frac{π}{4}}$)-sin(x+π).
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求g(x)在[0,π]上的最小值;
(3)若f(α)=$\frac{8}{5}$,α∈(${\frac{π}{6}$,$\frac{π}{2}}$),求sin(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在梯形ABCD中,AB∥CD,BC=6,cos∠ABC=-$\frac{1}{3}$.
(Ⅰ)若∠BAC=$\frac{π}{4}$,求AC的长;
(Ⅱ)若BD=9,求△BCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x+$\frac{a}{x}$(a为常数,且a>0).
(1)是否存在常数a,使f(x)在(0,3]上单调递减,且在[3,+∞)上单调递增?若存在,求出a的值,若不存在,请说明理由;
(2)若关于x的不等式x+$\frac{a}{x}$-m≤0(m为常数)在[1,4]上恒成立,求常数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知p:?x0∈R,m|sinx0+2|-9≥0,q:?x∈R,x2+2mx+1,若p∨p为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.log28+lg0.01+ln$\sqrt{e}+{2^{-1+{{log}_2}^3}}+lg\frac{5}{2}+2lg2-{(\frac{1}{2})^{-1}}$=2.

查看答案和解析>>

同步练习册答案