精英家教网 > 高中数学 > 题目详情
3.某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图.现拟定在各班中分数超过本班平均分的同学为“口语王”.
(Ⅰ)记甲班“口语王”人数为m,乙班“口语王”人数为n,比较m,n的大小;
(Ⅱ)随机从“口语王”中选取2人,记X为来自甲班“口语王”的人数,求X的分布列和数学期望.

分析 (Ⅰ)由平均数公式分别求得$\overline{{x}_{甲}}$和$\overline{{x}_{乙}}$,分别与原数据对比,即可求得m和n的值,并比较大小;
(Ⅱ)由题意可知:X可取0,1,2,求出相应概率,可得X的分布列,从而可求数学期望E(X).

解答 解:(Ⅰ)$\overline{{x}_{甲}}$=$\frac{1}{10}$(60+72+75+77+80+80+84+88+91+93)=80,
甲班“口语王”人数为m=4,
$\overline{{x}_{乙}}$=$\frac{1}{10}$(61+64+70+72+73+85+86+88+97+94)=79,
乙班“口语王”人数为n=5,
∴m<n,
(Ⅱ)由题意可知:X可取0,1,2,
P(X=0)=$\frac{{C}_{4}^{0}{C}_{5}^{2}}{{C}_{9}^{2}}$=$\frac{5}{18}$,
P(X=1)=$\frac{{C}_{4}^{1}{C}_{5}^{1}}{{C}_{9}^{2}}$=$\frac{5}{9}$,
P(X=2)=$\frac{{C}_{4}^{2}{C}_{5}^{0}}{{C}_{9}^{2}}$=$\frac{1}{6}$,
∴X的分布列为:

 X 0
 P$\frac{5}{18}$ $\frac{5}{9}$ $\frac{1}{6}$
E(X)=0×$\frac{5}{18}$+1×$\frac{5}{9}$+2×$\frac{1}{6}$=$\frac{8}{9}$.

点评 本题考查概率与统计,考查茎叶图的运用,随机变量的分布列与期望,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设p:x2-3x+2>0,q:$\frac{{{x^2}-1}}{|x|-2}$>0,则p是q(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若m,n∈R,分别求适合下列条件的m,n值.
(1)(2m+2n)-2i=4+(m-n)i;
(2)(m+3)i-n-2+$\frac{1}{i}$=0;
(3)$\frac{(1+m-3i)+(2+3ni)}{3+2i}$=i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b∈R,则下列恒成立的不等式是(  )
A.$\frac{{|{a+b}|}}{2}$≥$\sqrt{|{ab}|}$B.$\frac{b}{a}$+$\frac{a}{b}$≥2C.$\frac{{{a^2}+{b^2}}}{2}$≥(${\frac{a+b}{2}}$)2D.(a+b)($\frac{1}{a}$+$\frac{1}{b}$)≥4(a+b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-ax2-2x.
(I)若函数f(x)在x∈[$\frac{1}{4}$,2]内单调递减,求实数a的取值范围;
(II)当a=-$\frac{1}{4}$时,关于x的方程f(x)=-$\frac{1}{2}$x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设p:x<-1或x>1;q:x<-2或x>1,则¬p是¬q的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA=AD,PA⊥AB,N是棱AD的中点.
(Ⅰ)求证:平面PAB⊥平面PAD;
(Ⅱ)求证:PN⊥平面ABCD;
(Ⅲ)在棱BC上是否存在动点E,使得BN∥平面DEP?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系中,点A(0,2)和点B(3,5)到直线λ的距离都是3,则符合条件的直线λ共有(  )条.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=e|x-1|在区间[a,+∞)上是增函数,则a的取值范围是(  )
A.a≥1B.a≤1C.a≤-1D.a≥-1

查看答案和解析>>

同步练习册答案