精英家教网 > 高中数学 > 题目详情
13.直线y-3=-$\frac{3}{2}$(x+4)的斜率为k,在y轴上的截距为b,则有(  )
A.k=-$\frac{3}{2}$,b=3B.k=-$\frac{3}{2}$,b=-2C.k=-$\frac{3}{2}$,b=-3D.k=-$\frac{2}{3}$,b=-3

分析 化为斜截式方程y=kx+b,即可找出直线的斜率k及与y轴的截距b即可.

解答 解:直线y-3=-$\frac{3}{2}$(x+4)化为斜截式为y=-$\frac{3}{2}$x-3,
故k=-$\frac{3}{2}$,b=-3,
故选:C.

点评 此题考查了直线的斜截式方程,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.复数$z=\frac{1}{i}$的虚部等于(  )
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(1+x)+(1+x)2+…+(1+x)5的展开式中,x2项的系数是20(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示.
(1)求函数f(x)的表达式
(2)若方程f(x)=a在$({0,\frac{5π}{3}})$上有两个不同的实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列说法中正确的是④⑤.(填上所有正确的序号)
①如果b=$\sqrt{ac}$,那么数列a,b,c是等比数列;
②数列{an}的前n项和为Sn=3n2+n+1,则该数列的通项公式an=6n-2(n∈N*);
③等比数列a,a2,…,an,…的前n项和为Sn=$\frac{{a(1-{a^n})}}{1-a}$;
④若数列{an}为公差不为零的等差数列,则数列{an}中不存在p,q(p≠q)使得ap=aq
⑤等差数列{an}的前n项和为Sn,若S10=5,S20=25,则S30=60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinx-xcosx(x≥0).
(1)求函数f(x)的图象在$(\frac{π}{2},1)$处的切线方程;
(2)若任意x∈[0,+∞),不等式f(x)<ax3恒成立,求实数a的取值范围;
(3)设m=${∫}_{0}^{\frac{π}{2}}$f(x)dx,$g(x)=\frac{6m}{{(4-π){x^2}}}f(x)$,证明:$[1+g(\frac{1}{3})][1+g(\frac{1}{3^2})]…[1+g(\frac{1}{3^n})]<\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设Sn是数列{an}的前n项和,且a1=-1,$\frac{{{a_{n+1}}}}{{{S_{n+1}}}}={S_n}$,则a100=$\frac{1}{9900}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=$\frac{x-a}{{e}^{x}}$在区间(0,2)上有极值,则a的取值范围是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x3-3ax+b.
(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值.
(2)在(1)的条件下求函数f(x)的单调区间与极值点.

查看答案和解析>>

同步练习册答案