精英家教网 > 高中数学 > 题目详情
2.若函数f(x)=$\frac{x-a}{{e}^{x}}$在区间(0,2)上有极值,则a的取值范围是(-1,1).

分析 求出函数的导数,求出函数的极值点,得到关于a的不等式,解出即可.

解答 解:f′(x)=$\frac{1+a-x}{{e}^{x}}$,
令f′(x)>0,解得:x<a+1,
令f′(x)<0,解得:x>a+1,
故f(x)在(-∞,a+1)递增,在(a+1,+∞)递减,
故x=a+1是函数的极大值点,
由题意得:0<a+1<2,解得:-1<a<1,
故答案为:(-1,1).

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.4B.2C.6D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线y-3=-$\frac{3}{2}$(x+4)的斜率为k,在y轴上的截距为b,则有(  )
A.k=-$\frac{3}{2}$,b=3B.k=-$\frac{3}{2}$,b=-2C.k=-$\frac{3}{2}$,b=-3D.k=-$\frac{2}{3}$,b=-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从4名男生和5名女生中任选5人参加数学课外小组.
(1)若选2名男生和3名女生,且女生甲必须入选,求共有多少种不同的选法;
(2)记“男生甲和女生乙不同时入选”为事件A,求A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的离心率为e,抛物线x=my2的焦点为(e,0),则实数m的值为(  )
A.4B.$\frac{1}{4}$C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,AB=2,AC=PA=4.
(1)求直线PB与平面PAC所成角的正弦值;
(2)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy内,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{2}}{2}$,右焦点F到右准线的距离为2,直线l过右焦点F且与椭圆E交于A、B两点.
(1)求椭圆E的标准方程;
(2)若直线l与x轴垂直,C为椭圆E上的动点,求CA2+CB2的取值范围;
(3)若动直线l与x轴不重合,在x轴上是否存在定点P,使得PF始终平分∠APB?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知($\sqrt{x}$-$\frac{1}{2\root{4}{x}}$)n的展开式中,前三项的系数成等差数列.
(1)求n的值;
(2)求展开式中含x项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一元二次不等式-2x2-x+6≥0的解集为[-2,$\frac{3}{2}$].

查看答案和解析>>

同步练习册答案