精英家教网 > 高中数学 > 题目详情
函数f(x)=
2x+1
+
1
x-3
的定义域为(  )
A、(-∞,3)∪(3,+∞)
B、[-
1
2
,3)∪(3,+∞)
C、(-
1
2
,3)∪(3,+∞)
D、[-
1
2
,+∞)
考点:函数的定义域及其求法
专题:计算题
分析:本题含有根式跟分式,应选取满足根式及分式条件的x,再取并,即可.
解答: 解:f(x)=
2x+1
+
1
x-3

联立:
2x+1≥0
x-3≠0

x≥-
1
2
x≠3

该函数的定义域为[-
1
2
,3)∪(3,+∞).
故选B.
点评:函数的定义域,就是求使得函数解析式有意义的自变量x的取值范围,注意求完后应用区间或集合表示.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=(1-x)ex的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A=60°,b=4,a=2
3
,则△ABC的面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ex-
1
2
(x<0)与g(x)=x2+ln(x+a)图象上存在关y轴对称的点,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:?x∈R,ax2+ax+1≥0,若?p是真命题,则实数a的取值范围是(  )
A、(0,4]
B、[0,4]
C、(-∞,0]∪[4,+∞)
D、(-∞,0)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c,当x=1时f(x)的极大值为7,当x=3 时,f(x)有极小值,
(1)求a,b,c的值.
(2)函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正六边形ABCDEF,边长为1,其中心为O.
(1)在A、B、C、D、E、F、0中任取2点,作为向量的起点和终点,求得到单位向量的概率;
(2)在A、B、C、D、E、F中任取3点,求构成三角形的面积为
3
4
的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a=2,b=
6
,B=
π
3
,则sinA的值是(  )
A、
1
2
B、
2
2
C、
3
2
D、
1
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=sin(wx+Φ)(w>0)的部分图象如图,则w=(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案