精英家教网 > 高中数学 > 题目详情
已知函数y=
1-(
1
2
)x
,求该函数的定义域.
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件即可求函数的定义域.
解答: 解:要使函数有意义,则1-(
1
2
)x
≥0,
(
1
2
)x
≤1,则x≥0,
即函数的定义域为[0,+∞).
点评:本题主要考查函数定义域的求解,要求熟练掌握常见函数成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中为真命题的是(  )
A、若数列{an}为等比数列的充要条件是an2=an-1•an+1
B、“a=1是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件
C、若命题p:“?x∈R,x2-x-1>0”,则命题的否定为:“?x∈R,x2-x-1≤0”
D、直线a,b为异面直线的充要条件是直线a,b不相交

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
ax
x2+1
+2a,g(x)=alnx-x+a.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求证:对于任意的x1,x2∈(0,e),都有f(x1)>g(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC=2,BC=2
2
,点D是BC的中点.
(Ⅰ)求证:A1B∥平面AC1D
(Ⅱ)求点B到平面AC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
4+x2
3
+
12-x
5
,求f′(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设四棱锥E-ABCD的底面为菱形,且∠ABC=60°,P为DE上一点 若BE∥平面PAC.
(1)证明:P为ED中点;
(2)若AB=EC=2,AE=BE=
2
,证明:平面EAB⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,DA⊥平面ABC,DA∥PC,∠ACB=90°,AC=AD=BC=1,PC=2,E为PB的中点.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求二面角E-CD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的长轴长为4
2
,且与椭圆
x2
2
+
y2
4
=1有相同的离心率.
(Ⅰ)求椭圆M的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与M有两个交点A、B,且
OA
OB
?若存在,写出该圆的方程,并求|
AB
|的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=2BD,M是EA的中点
(Ⅰ)判断BM与DE的位置关系,不需证明;
(Ⅱ)求证:DM∥平面ABC;
(Ⅲ)求证:平面DEA⊥平面ECA.

查看答案和解析>>

同步练习册答案