分析 (Ⅰ)要证DE是圆O的切线,连接AC,只需证出∠DAO=90°,由BC∥OD⇒OD⊥AC,则OD是AC的中垂线.通过△AOC,△BOC均为等腰三角形,即可证得∠DAO=90°.
(Ⅱ)由 BC∥OD⇒∠CBA=∠DOA,结合∠BCA=∠DAO,得出△ABC∽△AOD,利用比例线段求出EB.
解答
(Ⅰ)证明:连接AC,AB是直径,则BC⊥AC,
由BC∥OD⇒OD⊥AC,
则OD是AC的中垂线⇒∠OCA=∠OAC,∠DCA=∠DAC,
⇒∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=∠DAO=90°.
⇒OC⊥DE,所以DE是圆O的切线.
(Ⅱ)解:BC∥OD⇒∠CBA=∠DOA,∠BCA=∠DAO⇒△ABC∽△AOD
⇒$\frac{BC}{OA}=\frac{AB}{OD}$⇒BC=$\frac{OA•AB}{OD}$=$\frac{2\sqrt{5}}{5}$⇒$\frac{BC}{OD}$=$\frac{2}{5}$⇒$\frac{BE}{OE}$=$\frac{2}{5}$⇒$\frac{BE}{OB}$=$\frac{2}{3}$⇒BE=$\frac{2}{3}$.
点评 本题考查圆的切线的证明,与圆有关的比例线段.准确掌握与圆有关的线、角的性质是解决此类问题的基础和关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{4}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{6}$ | D. | $\frac{{\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{5\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1<x3<x2 | B. | x3<x2<x1 | C. | x3<x1<x2 | D. | x3<x1<x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com