精英家教网 > 高中数学 > 题目详情
17.设过曲线f(x)=-ex-x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围是-1≤a≤2.

分析 求出函数f(x)=-ex-x的导函数,进一步求得$\frac{1}{{e}^{x}+1}∈(0,1)$,再求出g(x)的导函数的范围,然后把过曲线f(x)=-ex-x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.

解答 解:由f(x)=-ex-x,得f′(x)=-ex-1,
∵ex+1>1,∴$\frac{1}{{e}^{x}+1}∈(0,1)$,
由g(x)=ax+2cosx,得g′(x)=a-2sinx,
又-2sinx∈[-2,2],
∴a-2sinx∈[-2+a,2+a],
要使过曲线f(x)=-ex-x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2
则$\left\{\begin{array}{l}{-2+a≤0}\\{2+a≥1}\end{array}\right.$,解得-1≤a≤2.
即a的取值范围为-1≤a≤2.
故答案为:-1≤a≤2.

点评 本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为集合间的关系求解,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.数列{an}的首项为a1=2,前n项和为Sn,且满足Sn=$\frac{{n}^{2}}{{n}^{2}-1}$Sn-1+$\frac{n}{n+1}$(n≥2)
(1)证明:数列{$\frac{n+1}{n}$Sn}是等差数列,并求{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{n}^{2}+n+2}$,记数列{bn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为4,则$\frac{3}{a}+\frac{2}{b}$的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)的定义域为R,若存在常数ω>0使|f(x)|≤ω|x|对一切实数x均成立,则称f(x)为“条件约束函数”.现给出下列函数:
①f(x)=4x;
②f(x)=x2+2;
③f(x)=$\frac{2x}{{x}^{2}-2x+5}$;
④f(x)是定义在实数集R上的奇函数,且对一切x1,x2均有f(x1)-f(x2)≤4|x1-x2|.
其中是“条件约束函数”的序号是①③④(写出符合条件的全部序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续驶里程数R(单位:公里)分为3类,即A:80≤R<150,B:150≤R<250,C:R≥250.对这140辆车的行驶总里程进行统计,结果如下表:
类型ABC
已行驶总里程不超过5万公里的车辆数104030
已行驶总里程超过5万公里的车辆数202020
(Ⅰ)从这140辆汽车中任取1辆,求该车行驶总里程超过5万公里的概率;
(Ⅱ)公司为了了解这些车的工作状况,决定抽取14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从C类车中抽取了n辆车.
(ⅰ)求n的值;
(ⅱ)如果从这n辆车中随机选取2辆车,求恰有1辆车行驶总里程超过5万公里的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某在元宵节活动上,组织了“摸灯笼猜灯谜”的趣味游戏.已知在一个不透明的箱子内放有大小和形状相同的标号分别为1,2,3的小灯笼若干个,每个灯笼上都有一个谜语,其中标号为1的小灯笼1个,标号为2的小灯笼2个,标号为3的小灯笼n个.若参赛者从箱子中随机摸取1个小灯笼进行谜语破解,取到标号为3的小灯笼的概率为$\frac{1}{4}$.
(Ⅰ)求n的值;
(Ⅱ)从箱子中不放回地摸取2个小灯笼,记第一次摸取的小灯笼的标号为a,第二次摸取的小灯笼的标号为b.记“a+b≥4”为事件A,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知点C是以AB为直径的半圆O上一点,过C的直线交AB的延长线于E,交过点A的圆O的切线于点D,BC∥OD,AD=AB=2.
(Ⅰ)求证:直线DC是圆O的切线;
(Ⅱ)求线段EB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在极坐标系中,设ρ>0,0≤θ<2π,曲线ρ=2与曲线ρsinθ=2交点的极坐标为$(2,\frac{π}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若psinθ-qcosθ=$\sqrt{{p}^{2}+{q}^{2}}$(p,q为常数,且q≠0),求$\frac{pcosθ-2qsinθ}{3pcosθ-4qsinθ}$的值.

查看答案和解析>>

同步练习册答案