精英家教网 > 高中数学 > 题目详情
3.在数列{an}中,已知an=$\frac{n}{n+1}$,则{an}是(  )
A.递增数列B.递减数列C.常数列D.摆动数列

分析 作差an+1-an,判断符号即可得出.

解答 解:∵an+1-an=$\frac{n+1}{n+2}$-$\frac{n}{n+1}$=$\frac{1}{(n+1)(n+2)}$>0,
∴an+1>an
∴{an}是单调递增数列,
故选:A.

点评 本题考查了数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数y=$\frac{{2}^{x}-1}{{2}^{x}+1}$的奇偶性为奇函数,函数f(x)=$\frac{2}{{2}^{x}+1}$+1的对称中心为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,扇形MON的半径为2,圆心角为$\frac{2}{3}$π,四边形ABCD为扇形的内接等腰梯形,其中底边AB的两个端点分别在半径ON和0M上,C、D在弧$\widehat{MQN}$上,Q为弧$\widehat{MN}$的中点,∠ABC=$\frac{2}{3}$π,求梯形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${C}_{4}^{1}$+${C}_{4}^{2}$+${C}_{4}^{3}$+${C}_{4}^{4}$=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=-$\frac{1}{2}$x2-x+2,x∈[a,a+1],求g(x)的最大值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设方程(x-k)2+(y-1)2=-k2+k+2表示圆,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知平面向量|$\overrightarrow{OA}$|=2,$\overrightarrow{OA}$与$\overrightarrow{OB}$-$\overrightarrow{OA}$的夹角为120°,$\overrightarrow{OC}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),求|$\overrightarrow{OC}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x2+nx+m,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围是[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,四棱锥P-ABCD中,∠BAD=∠ABC=90°,BC=2AD,△PAB和△PAD都是等边三角形,则异面直线CD与PB所成角的大小为90°.

查看答案和解析>>

同步练习册答案