精英家教网 > 高中数学 > 题目详情
18.已知函数g(x)=-$\frac{1}{2}$x2-x+2,x∈[a,a+1],求g(x)的最大值h(a).

分析 把二次函数配方,然后对a分类讨论,利用函数的单调性求得g(x)的最大值h(a).

解答 解:g(x)=-$\frac{1}{2}$x2-x+2=$-\frac{1}{2}(x+1)^{2}+\frac{5}{2}$,
当a≥-1时,g(x)在[a,a+1]上单调递减,g(x)max=g(a)=$-\frac{{a}^{2}}{2}-a+2$;
当a+1≤-1,即a≤-2时,g(x)在[a,a+1]上单调递增,g(x)max=g(a+1)=$-\frac{{a}^{2}}{2}-2a+\frac{1}{2}$;
当-2<a<-1时,g(x)在[a,-1]上单调递增,在[-1,a]上单调递减,$g(x)_{max}=g(-1)=\frac{5}{2}$.
∴$h(a)=\left\{\begin{array}{l}{-\frac{{a}^{2}}{2}-2a+\frac{1}{2},a≤-2}\\{\frac{5}{2},-2<a<-1}\\{-\frac{{a}^{2}}{2}-a+2,a≥-1}\end{array}\right.$.

点评 本题考查二次函数在闭区间上的最值,考查了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值为M,若M的取值范围是[1,2],则点M(a,b)所在的区域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-5≥0}\\{x+y≤7}\\{x-2≥0}\\{\;}\end{array}\right.$,则$\frac{y}{x}$的最大值是$\frac{5}{2}$,x+2y的最大值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若(1-2x)6=a0+a1x+a2x+…+a6x6,则|a0|+|a1|+|a2|+…+|a6|的值为(  )
A.1B.26C.35D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C1:(x-2)2+(y-3)2=1.圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则PM+PN的最小值为5$\sqrt{2}$-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,已知an=$\frac{n}{n+1}$,则{an}是(  )
A.递增数列B.递减数列C.常数列D.摆动数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=$\sqrt{x+1}$},B={y|y<1},则A∩B=(  )
A.(-1,1)B.[-1,1]C.[-1,1)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在D上的函数,若f(x)满足:(1)对任意x∈D及任意正实数t,若x+t∈D,都有f(x+t)≥f(x);(2)存在正实数M,使得|f(x)|≤M,则称f(x)为“单限行函数”,满足|f(x)|≤M的最小正数M叫f(x)的“单限峰值”给出下列结论:
①f(x)=2016(x∈[-1,2])是“单限行函数”;
②f(x)=xsinx+cosx(x∈[0,$\frac{π}{2}$])是“单限行函数”,且“单限峰值”为1;
③若f(x)=x3-12x(x∈[m,m+2])是“单限行函数”,则-4<m<2;
④f(x)是定义在D上的“单限行函数”,若f(x1)=f(x2),则x1=x2
其中正确结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知正方形ABCD的对角线AC与BD相交于E点,将△ACD沿对角线折起,使得平面ABC⊥平面ADC(如图),则下列命题中正确的是(  )
A.直线AB⊥直线CD,且直线AC⊥直线BD
B.直线AB⊥平面BCD,且直线AC⊥平面BDE
C.平面ABC⊥平面BDE,且平面ACD⊥BDE
D.平面ABD⊥平面BCD,且平面ACD⊥平面BDE

查看答案和解析>>

同步练习册答案