精英家教网 > 高中数学 > 题目详情
6.若(1-2x)6=a0+a1x+a2x+…+a6x6,则|a0|+|a1|+|a2|+…+|a6|的值为(  )
A.1B.26C.35D.36

分析 本题即求(1+2x)6展开式中各项的系数和,再令x=1,可得(1+2x)6展开式中各项的系数和的值.

解答 解:∵(1-2x)6=a0+a1x+a2x+…+a6x6,则|a0|+|a1|+|a2|+…+|a6|的值,
即(1+2x)6展开式中各项的系数和,
令x=1,可得(1+2x)6展开式中各项的系数和为36
故选:D.

点评 本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.对于参数方程为$\left\{\begin{array}{l}{x=1-tcos30°}\\{y=2+tsin30°}\end{array}\right.$和$\left\{\begin{array}{l}{x=1+tcos30°}\\{y=2-tsin30°}\end{array}\right.$的曲线,正确的结论是(  )
A.是倾斜角为30°的平行线B.是倾斜角为30°的同一直线
C.是倾斜角为150°的同一直线D.是过点(1,2)的相交直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X在(0,1)内取值的概率为0.4.则X在(0,2)内取值的概率为(  )
A.0.8B.0.6C.0.4D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,扇形MON的半径为2,圆心角为$\frac{2}{3}$π,四边形ABCD为扇形的内接等腰梯形,其中底边AB的两个端点分别在半径ON和0M上,C、D在弧$\widehat{MQN}$上,Q为弧$\widehat{MN}$的中点,∠ABC=$\frac{2}{3}$π,求梯形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知实数x,y满足方程x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的最大值与最小值;
(2)求y-x最大值与最小值;
(3)求x2+y2+2x+2y最大值与最小值;
(4)若对任意的x,y有x+2y+m≥0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${C}_{4}^{1}$+${C}_{4}^{2}$+${C}_{4}^{3}$+${C}_{4}^{4}$=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=-$\frac{1}{2}$x2-x+2,x∈[a,a+1],求g(x)的最大值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知平面向量|$\overrightarrow{OA}$|=2,$\overrightarrow{OA}$与$\overrightarrow{OB}$-$\overrightarrow{OA}$的夹角为120°,$\overrightarrow{OC}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),求|$\overrightarrow{OC}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a,b均为正数,且a2+$\frac{1}{4}$b2=1,则a$\sqrt{1+{b}^{2}}$的最大值为$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案