精英家教网 > 高中数学 > 题目详情
9.设实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-5≥0}\\{x+y≤7}\\{x-2≥0}\\{\;}\end{array}\right.$,则$\frac{y}{x}$的最大值是$\frac{5}{2}$,x+2y的最大值是12.

分析 画出满足条件的平面区域,求出角点的坐标,根据$\frac{y}{x}$的几何意义求出其最大值,令z=x+2y,得:y=-$\frac{1}{2}$x+$\frac{z}{2}$,结合图象求出其最大值即可.

解答 解:画出满足条件的平面区域,如图示:

由$\left\{\begin{array}{l}{x=2}\\{x+y=7}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$,
∴$\frac{y}{x}$的最大值是$\frac{5}{2}$,
令z=x+2y,得:y=-$\frac{1}{2}$x+$\frac{z}{2}$,
结合图象得:直线过(2,5)时,z最大,z的最大值是12,
故答案为:$\frac{5}{2}$,12.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若(x+1)n=xn+…+ax3+bx2+…+1(n∈N*),且a:b=3:1,则n的值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知角α的终边过点P(-3,4),则sin α=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X在(0,1)内取值的概率为0.4.则X在(0,2)内取值的概率为(  )
A.0.8B.0.6C.0.4D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前n项和为Sn,a2=-2,a8=6,则S9=(  )
A.9B.18C.27D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,扇形MON的半径为2,圆心角为$\frac{2}{3}$π,四边形ABCD为扇形的内接等腰梯形,其中底边AB的两个端点分别在半径ON和0M上,C、D在弧$\widehat{MQN}$上,Q为弧$\widehat{MN}$的中点,∠ABC=$\frac{2}{3}$π,求梯形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知实数x,y满足方程x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的最大值与最小值;
(2)求y-x最大值与最小值;
(3)求x2+y2+2x+2y最大值与最小值;
(4)若对任意的x,y有x+2y+m≥0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=-$\frac{1}{2}$x2-x+2,x∈[a,a+1],求g(x)的最大值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,则|$\overrightarrow{b}$|=3$\sqrt{5}$.

查看答案和解析>>

同步练习册答案