| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 分别求出f(2)和f(3)并判断符号,再由函数的单调性判断出函数唯一零点所在的区间,即可求出m,从而可求${27}^{\frac{1}{m}}$+log3m.
解答 解:∵f(2)=ln2-2<0,f(3)=ln3>0,
∴f(x)=lnx+2x-6的存在零点x0∈(2,3).
∵f(x)=lnx+2x-6在定义域(0,+∞)上单调递增,
∴f(x)=lnx+2x-6的存在唯一的零点x0∈(2,3).
则整数m=3.
∴${27}^{\frac{1}{m}}$+log3m=3+1=4
故选D.
点评 本题主要考查函数零点存在性的判断方法的应用,要判断个数需要判断函数的单调性,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{3}$π | B. | $\frac{64}{3}$ | C. | $\frac{16π+64}{3}$ | D. | 16π+64 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com