分析 分别设出两个人解答一道几何题所用的时间为x,y,则5<x<7,6<y<8,甲、乙各解同一道几何题,则乙比甲先解答完的满足x<y,因此求出满足条件的区域面积,利用面积比求概率.
解答 解:设两个人解答一道几何题所用的时间为分别为x,y,则5<x<7,6<y<8,对应区域的面积为4,甲、乙各解同一道几何题,则乙比甲先解答完的满足x>y,对应区域面积
$\frac{1}{2}×1×1$=$\frac{1}{2}$
,由几何概型的个数得到所求概率为$\frac{1}{8}$;
故答案为:$\frac{1}{8}$.
点评 本题的难点是把时间分别用x,y坐标来表示,从而把时间长度这样的一维问题转化为平面图形的二维面积问题,转化成面积型的几何概型问题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$斗 | B. | $\frac{4}{5}$斗 | C. | 1斗 | D. | $\frac{5}{4}$斗 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com