精英家教网 > 高中数学 > 题目详情
10.甲每次解答一道几何体所用的时间在5至7分钟,乙每次解答一道几何体所用的时间在6至8分钟,现甲、乙各解同一道几何体,则乙比甲先解答完的概率为$\frac{1}{8}$.

分析 分别设出两个人解答一道几何题所用的时间为x,y,则5<x<7,6<y<8,甲、乙各解同一道几何题,则乙比甲先解答完的满足x<y,因此求出满足条件的区域面积,利用面积比求概率.

解答 解:设两个人解答一道几何题所用的时间为分别为x,y,则5<x<7,6<y<8,对应区域的面积为4,甲、乙各解同一道几何题,则乙比甲先解答完的满足x>y,对应区域面积
$\frac{1}{2}×1×1$=$\frac{1}{2}$,由几何概型的个数得到所求概率为$\frac{1}{8}$;
故答案为:$\frac{1}{8}$.

点评 本题的难点是把时间分别用x,y坐标来表示,从而把时间长度这样的一维问题转化为平面图形的二维面积问题,转化成面积型的几何概型问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.${log_2}\frac{1}{4}+{log_2}32$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点分别关于两条渐近线的对称点重合,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在图所示的几何体中,底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N为线段PB的中点.
(1)证明:NE⊥平面PBD;
(2)求四棱锥B-CEPD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有40种.(以数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线y=4ax2(a≠0)的焦点坐标是$(0,\frac{1}{16a})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,且$\frac{1}{{a}_{n}+1}$=$\frac{3}{{a}_{n+1}+1}$,a2=5,则S6=722.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.《九章算术•衰分》是我国古代内容极为丰富的数学名著,书中有如下问题:
    今有禀栗,大夫、不更、簪裹、上造、公士、凡五人,一十五斗,今有大夫一人后来,亦当禀五斗,仓无栗,欲以衰出之,问各几何?
    现解决如下问题:原有大夫、不更、簪裹、上造、公士5种爵位各1人,现增加一名大夫,共计6人,按照爵位共献出5斗栗,其中5种爵位的人所献“禀栗”成等差数列{an},其公差d满足d=-a5,请问6人中爵位为“簪裹”的人需献出栗的数量是(  )
A.$\frac{3}{4}$斗B.$\frac{4}{5}$斗C.1斗D.$\frac{5}{4}$斗

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow m$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),$\overrightarrow n$=(-$\sqrt{3}$,1),x∈R,则|$\overrightarrow m$-$\overrightarrow n$|的最大值是3.

查看答案和解析>>

同步练习册答案