精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=|x-a|-|x-3|.
(1)若a=-1,解不等式f(x)≥2;
(2)若存在实数x,使得$f(x)≤-\frac{a}{2}$成立,试求a的取值范围.

分析 (1)若a=-1,则f(x)=|x+1|-|x-3|,运用函数的零点分区间,讨论当x≥3时,当-1≤x<3时,当x<-1时,化简不等式求解,最后求并集即可;
(2)由题意知这是一个存在性的问题,须求出不等式左边的最大值,可运用绝对值不等式的性质可得最大值,再令其大于等于$\frac{a}{2}$,即可解出实数a的取值范围.

解答 解:(1)若a=-1,则f(x)=|x+1|-|x-3|,
若x≥3,由f(x)≥2,
得(x+1)-(x-3)≥2不等式显然成立,
若-1≤x<3,由f(x)≥2,
得(x+1)+(x-3)≥2,解得x≥2.
又-1≤x<3,∴2≤x<3.
若x<-1,由f(x)≥2,
得-(x+1)+(x-3)≥2不等式不成立.
∴不等式f(x)≥2的解集为{x|x≥2}.
综上所述,不等式f(x)≥2的解集为{x|x≥2};
(2)不等式$f(x)≤-\frac{a}{2}$即|x-a|-|x-3|$≤-\frac{a}{2}$.
|x-a|-|x-3|≥-|(x-a)-(x-3)|=-|a-3|,
若a>3,等号成立当且仅当x≥3,
若a=3,等号成立当且仅当x∈R,
若a<3,等号成立当且仅当x≤3.
∴-|a-3|$≤-\frac{a}{2}$,即|a-3|$≥\frac{a}{2}$,
若a≥3,则(a-3)$≥\frac{a}{2}$,解得a≥6.
若a<3,则-(a-3)$≥\frac{a}{2}$,解得a≤2.
∴a的取值范围是(-∞,2]∪[6,+∞).
综上所述,a的取值范围是(-∞,2]∪[6,+∞).

点评 本题考查绝对值不等式,求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别,本题是一个存在问题,解决的是有的问题,故取|a-3|≥$\frac{a}{2}$,即小于等于左边的最大值即满足题意,本题是一个易错题,主要错误就是出在把存在问题当成恒成立问题求解,因思维错误导致错误,是有一定难度的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.两个袋中各装有编号为1,2,3,4,5的5个小球,分别从每个袋中摸出一个小球,所得两球编号数之和小于5的概率为(  )
A.$\frac{1}{5}$B.$\frac{7}{25}$C.$\frac{6}{25}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于任意实数a,b,c,d以下四个命题中,其中正确的有(  )
①ac2>bc2,则a>b,
②若a>b,c>d,则a+c>b+d;
③若a>b,c>d,则ac>bd;
④若a>b,则$\frac{1}{a}<\frac{1}{b}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中,正确的是(  )
A.若a>b,c>d,则a>cB.若ac>bc,则a>b
C.若$\frac{a}{{c}^{2}}$<$\frac{b}{{c}^{2}}$,则a<bD.若a>b,c>d,则ac>bd

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中,真命题是(  )
A.存在x∈R,ex≤0B.a+b=0的充要条件是$\frac{a}{b}$=-1
C.任意x∈R,2x>x2D.a>1,b>1是ab>1的充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是$p=\left\{\begin{array}{l}t+20,0<t<25,t∈N\\-t+100,25≤t≤30,t∈N\end{array}\right.$,该商品的日销售量Q(件)与时间t(天)的函数关系是Q=-t+40(0<t≤30,t∈N).
(1)求这种商品的日销售金额的解析式;
(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天的第几天?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.教材曾有介绍:圆x2+y2=r2上的点(x0,y0)处的切线方程为x0x+y0y=r2.我们将其结论推广:椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的点(x0,y0)处的切线方程为$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,在解本题时可以直接应用.已知,直线x-y+$\sqrt{3}$=0与椭圆C1:$\frac{x^2}{a^2}+{y^2}$=1(a>1)有且只有一个公共点.
(1)求椭圆C1的方程;
(2)设O为坐标原点,过椭圆C1上的两点A、B分别作该椭圆的两条切线l1、l2,且l1与l2交于点M(2,m).当m变化时,求△OAB面积的最大值;
(3)若P1,P2是椭圆C2:$\frac{x^2}{{2{a^2}}}+{y^2}$=1上不同的两点,P1P2⊥x轴,圆E过P1,P2,且椭圆C2上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆.试问:椭圆C2是否存在过左焦点F1的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆${C_1}:\frac{x^2}{m^2}+{y^2}=1({m>1})$与双曲线C2:$\frac{{x}^{2}}{{n}^{2}}$-y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则(  )
A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了了解高血压是否与常喝酒有关,现对30名成年人进行了问卷调查得到如下列联表:
常喝不常喝合计
正常血压4812
高血压16218
合计201030
已知在全部30人中随机抽取1人,抽到正常血压成年人的概率为$\frac{2}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为高血压与常喝酒有关?说明理由;
(3)4名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

同步练习册答案