精英家教网 > 高中数学 > 题目详情
2.设α是锐角,sinα=$\frac{4}{5}$.求:
(1)cosα的值;
(2)sin(α+$\frac{π}{3}$)的值.

分析 (1)由题意和同角三角函数基本关系可得cosα;
(2)由两角和的正弦公式可得sin(α+$\frac{π}{3}$)=$\frac{1}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα,代值计算可得.

解答 解:(1)∵α是锐角,sinα=$\frac{4}{5}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{3}{5}$;
(2)sin(α+$\frac{π}{3}$)=$\frac{1}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα
=$\frac{1}{2}×\frac{4}{5}+\frac{\sqrt{3}}{2}×\frac{3}{5}$=$\frac{4+3\sqrt{3}}{10}$.

点评 本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.观察下列等式:13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第n个等式为:13+23+33+…+n3=(1+2+3+…+n)2=$\frac{{n}^{2}•(n+1)^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.由某个2×2列联表数据计算得随机变量K2的观测值k=6.879,则下列说法正确的是(  )
P(K2≥k00.400.250.150.100.050.0250.0100.0050.001
k00.7081.3232.0722.7063.8415.0246.6357.87910.828
A.两个分类变量之间有很强的相关关系
B.有99%的把握认为两个分类变量没有关系
C.在犯错误的概率不超过1.0%的前提下认为这两个变量间有关系
D.在犯错误的概率不超过0.5%的前提下认为这两个变量间有关系

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一个程序框图,根据框图写出其判断条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=0.2-x的反函数是$y=lo{g}_{5}^{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A,B为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右顶点,P为椭圆上异于A,B的任意一点,直线AP,BP分别交椭圆的直线l:x=4于点M,N,则$\overrightarrow{AM}$•$\overrightarrow{BN}$的值为(  )
A.$\sqrt{3}$B.3C.3$\sqrt{3}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$x2-$\frac{1}{2}$与函数g(x)=mlnx在点(1,0)处有公共的切线,设h(x)=ax-g(x).
(Ⅰ)求m的值;
(Ⅱ)若h(x)在x=2处有极值,求h(x)的单调递减区间;
(Ⅲ)是否存在实数a,使h(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线y=sinx+ex(其中e=2.71828…是自然对数的底数)在点(0,1)处的切线的斜率为(  )
A.2B.3C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{a}$=($\sqrt{3}$,1),|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2$\sqrt{3}$,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角大小为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案