精英家教网 > 高中数学 > 题目详情
20.在△ABC中,角A,B,C所对的边分别为$a,b,c.且满足\frac{asinA+bsinB-csinC}{asinB}=\frac{{2\sqrt{3}}}{3}sinC$.
(1)求角C;
(2)若△ABC的中线CD的长为1,求△ABC的面积的最大值.

分析 (1)由已知及正弦定理可得:$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{ab}$=$\frac{2\sqrt{3}}{3}$sinC,由余弦定理,同角三角函数基本关系式可求tanC的值,结合范围C∈(0,π),可得C的值.
(2)由三角形中线长定理得:2(a2+b2)=4+c2,由三角形余弦定理得:c2=a2+b2-ab,消去c2,结合基本不等式可求ab≤$\frac{4}{3}$,利用三角形面积公式即可计算得解.

解答 解:(1)∵由已知及正弦定理可得:$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{ab}$=$\frac{2\sqrt{3}}{3}$sinC,
∴由余弦定理可得:$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{\sqrt{3}}}{3}sinC$,
即$tanC=\sqrt{3}$,
∴由C∈(0,π),可得$C=\frac{π}{3}$.
(2)由三角形中线长定理得:2(a2+b2)=22+c2=4+c2
由三角形余弦定理得:c2=a2+b2-ab,
消去c2得:$4-ab={a^2}+{b^2}≥2ab,ab≤\frac{4}{3}$(当且仅当a=b时,等号成立),
即${S_{△ABC}}=\frac{1}{2}absinC≤\frac{1}{2}×\frac{4}{3}×\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{3}$.

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式,三角形中线长定理的综合应用,三角形中线长定理主要表述三角形三边和中线长度关系,定理内容为:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+lnx(a∈R).
(1)若a=2,求曲线y=f(x)在x=1处切线的斜率;
(2)求f(x)的单调区间;
(3)若对任意x∈(0,+∞),均有f(x)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为偶数且点数之差的绝对值为2},则P(A)=(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,a=2,b=6,B=60°,则c=$1+\sqrt{33}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{\begin{array}{l}-{x^2}-4x+5,x≤1\\ lnx,x>1\end{array}\right.$若关于x的方程$f(x)=kx-\frac{1}{2}$恰有四个不相等的实数根,则实数k的取值范围是(  )
A.$({\frac{1}{2},\sqrt{e}})$B.$[{\frac{1}{2},\sqrt{e}})$C.$({\frac{1}{2},\frac{{\sqrt{e}}}{e}}]$D.$({\frac{1}{2},\frac{{\sqrt{e}}}{e}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦,D,E分是椭圆C的上顶点和右顶点,且S${\;}_{△DE{F}_{2}}$=$\frac{\sqrt{3}}{2}$,离心率e=$\frac{1}{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过F2的直线l与椭圆C相交于A,B两点,求S△AOB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(m,n-1)与$\overrightarrow{b}$=(2,-1)平行,则$\sqrt{{m}^{2}+{n}^{2}}$的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某公司对新招聘的员工张某进行综合能力测试,共设置了A、B、C三个测试项目.假定张某通过项目A的概率为$\frac{1}{2}$,通过项目B、C概率均为a(0<a<1),且这三个测试项目能否通过相互独立.
(Ⅰ)用随机变量X表示张某在测试中通过的项目个数,当$a=\frac{1}{3}$时,求X的概率分布和数学期望;
(Ⅱ)若张某通过一个项目的概率最大,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.工商局对超市某种食品抽查,这种食品每箱装有6袋,经检测,某箱中每袋的重量(单位:克)如以下茎叶图所示.则这箱食品一袋的平均重量和重量的中位数分别为(  )
A.249,248B.249,249C.248,249D.248,249

查看答案和解析>>

同步练习册答案