精英家教网 > 高中数学 > 题目详情
9.已知数列xn=an2+bn+c,n∈N*,使得x100+k,x200+k,x300+k成等差数列的必要条件是(  )
A.a≥0B.b≤0C.c=0D.a-2b+c=0

分析 由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+kx300+k,代入化简即可得出.

解答 解:由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+kx300+k
可得:2a(200+k)2+2b(200+k)+2c=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,
化为:a=0.
∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.
故选:A.

点评 本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.以直角坐标系原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,0<α<π),曲线C的极坐标方程ρ=$\frac{2cosθ}{si{n}^{2}θ}$.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,已知定点P($\frac{1}{2},\;0$),当α=$\frac{π}{3}$时,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=$\frac{π}{4}$,则椭圆和双曲线的离心率乘积的最小值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数a,b均不为零,且x2a=$\frac{1}{x^b}$(x>0),则(xa-2xb9展开式中的常数项等于(  )
A.672B.-672C.-762D.762

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\vec a=(sinx,-1),\vec b=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=({\vec a+\vec b})•\vec a-1$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为△ABC三个内角A,B,C的对边,若$f(\frac{A}{2})=\frac{3}{2}$,a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xoy中,曲线C1的普通方程为x2+y2+2x-4=0,曲线C2的参数方程为$\left\{\begin{array}{l}x={t^2}\\ y=t\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系.
(1)求曲线C1,C2的极坐标方程;
(2)求曲线C1与C2交点的极坐标(ρ,θ),其中ρ≥0,0≤θ<2π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直角坐标方程的x2+y2-2x+3y=0极坐标方程为ρ=2cosθ-3sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某设备的使用年限x与所支出的维修费用y的统计数据如表:
使用年限x(单位:年)23456
维修费用y(单位:万元)1.54.55.56.57.0
根据表可得回归直线方程为$\stackrel{∧}{y}$=1.3x+$\stackrel{∧}{a}$,据此模型预测,若使用年限为14年,估计维修费用约为18万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|$\frac{2}{3}$x+1|.
(1)若不等式f(x)≥-|x|+a恒成立,求实数a的取值范围;
(2)若对于实数x,y,有|x+y+1|≤$\frac{1}{3}$,|y-$\frac{1}{3}$|≤$\frac{2}{3}$,求证:f(x)≤$\frac{7}{9}$,

查看答案和解析>>

同步练习册答案